Se puede demostrar que:
\begin{align}
\sum_{n=1}^{\infty} \ln^{2}\left(1+\frac{1}{2n}\right) \, \ln^{2}\left(1 + \frac{1}{2n+1}\right) = - \frac{\ln^{4} 2}{2} + 2 \, \sum_{n=1}^{\infty} \ln^{2}\left(1 + \frac{1}{n}\right) \, \ln\left(1+\frac{1}{2n}\right) \, \ln\left(1 + \frac{1}{2n+1}\right).
\end{align}
El resto de suma puede estar presentable en un formulario no basado en la estimación numérica. En el caso de que un par de posiciones decimales de precisión se solicita la siguiente identidad se presenta. Precisa a 9 cifras decimales la serie está dada por
\begin{align}
\sum_{n=1}^{\infty} \ln^{2}\left(1+\frac{1}{2n}\right) \, \ln^{2}\left(1 + \frac{1}{2n+1}\right) = \left( \frac{1}{2} - \frac{1}{5^{\frac{32}{37}} \, \gamma} \right) \, \ln^{4}2 \approx 0.01600318562\cdots
\end{align}
donde $\gamma$ es el de Euler-Mascheroni constante.
Prueba:
Vamos
$$f(x) = \ln\left(1 + \frac{1}{x}\right) \tag{1}$$
entonces
$$f^{2}(n) = ( f(2n) + f(2n+1) )^{2} = f^{2}(2n) + f^{2}(2n+1) + 2 \, f(2n) \, f(2n+1) \tag{2}$$
que los rendimientos de
$$f(2n) \, f(2n+1) = \frac{1}{2} \, [ f^{2}(n) - f^{2}(2n) - f^{2}(2n+1) ]. \tag{3}$$
El cuadrado ambos lados proporciona
\begin{align}
& f^{2}(2n) \, f^{2}(2n+1) \\
& \hspace{5mm} = \frac{1}{4} \, [ f^{4}(n) + f^{4}(2n) + f^{4}(2n+1) - 2 \, f^{2}(n) \, ( f^{2}(2n) + f^{2}(2n+1) ) + 2 \, f^{2}(2n) \, f^{2}(2n+1) ]
\end{align}
o
$$f^{2}(2n) \, f^{2}(2n+1) = \frac{1}{2} \, [ f^{4}(n) + f^{4}(2n) + f^{4}(2n+1) - 2 \, f^{2}(n) \, ( f^{2}(2n) + f^{2}(2n+1) ) ] \tag{4}$$
Haciendo uso de (1) esto se reduce a
$$f^{2}(2n) \, f^{2}(2n+1) = - \frac{1}{2} \, [f^{4}(n) - f^{4}(2n) - f^{4}(2n+1) ] + 2 \, f^{2}(n) \, f(2n) \, f(2n+1). \tag{5}$$
Ahora, lo que se suma sobre el índice, a continuación, se observa que:
\begin{align}
S &= \sum_{n=1}^{\infty} f^{2}(2n) \, f^{2}(2n+1) \\
&= - \frac{1}{2} \, \sum_{n=1}^{\infty} \left[ f^{4}(n) - f^{4}(2n) - f^{4}(2n+1) \right] + 2 \, \sum_{n=1}^{\infty} f^{2}(n) \, f(2n) \, f(2n+1) \\
&= - \frac{1}{2} \, f^{4}(1) + + 2 \, \sum_{n=1}^{\infty} f^{2}(n) \, f(2n) \, f(2n+1) \tag{6}
\end{align}
A partir de (6) la primera declaración presentada se obtiene. Como al resto de la suma se cree que también es de la forma $A_{0} \, \ln^{4}2$.