Dejemos que $S=\{-ia, ia\}$ , dejemos que $ \varphi \colon \Bbb C\setminus S\to \Bbb C, z\mapsto\dfrac{e^{i(3z)}}{(z^2+a^2)^2}$ .
Dado $n\in \Bbb N$ tal que $n> a$ , defina $\gamma (n):=\gamma _1(n)\lor \gamma _2(n)$ con $\gamma _1(n)\colon [-n,n]\to \Bbb C, t\mapsto t$ y $\gamma _2(n)\colon [0,\pi]\to \Bbb C, \theta \mapsto ne^{i\theta}$ , ( $\gamma (n)$ es un semicírculo superior).
Observe que $S$ es el conjunto de singularidades de $\varphi$ y ambos son polos de segundo orden.
Por lo tanto, $$\operatorname {Res}(\varphi ,ia)=\left.\dfrac{d}{dz}\left(z\mapsto (z-ia)^2\varphi (z)\right)\right\vert_{z=ia}\overset{\text{W.A.}}{=}\left.\dfrac{ie^{i3z}(3ia+3z+2i)}{(z+ia)^3}\right\vert_{z=ia} = \dfrac{e^{-3a}(3a+1)}{4a^3i}.$$
Aquí es el enlace para la igualdad $\text {W.A.}$ .
Consideraciones rápidas sobre los números de bobinado, la región interior y exterior de $\gamma(n)$ El hecho de que $n>a$ El hecho de que $\varphi$ es holomorfa y el teorema del residuo da como resultado $$\displaystyle \int \limits_{\gamma (n)}\varphi (z)dz=2\pi i\cdot \dfrac{e^{-3a}(3a+1)}{4a^3i}= \dfrac{\pi e~^{-3a}(3a+1)}{2a^3}.$$
Por otro lado $\displaystyle \int \limits _{\gamma (n)}\varphi=\int \limits _{\gamma _1(n)}\varphi +\int \limits_{\gamma _2(n)}\varphi \tag {*}$
Tenga en cuenta que $$\displaystyle\int \limits _{\gamma _1(n)}\varphi(z)dz=\int \limits _{-n}^n\varphi (t)dt=\int \limits_{-n}^n\dfrac{e^{i(3t)}}{(t^2+a^2)^2}dt=\int \limits_{-n}^n\dfrac{\cos(3t)+i\sin 3t)}{(t^2+a^2)^2}dt=\int \limits _{-n}^n\dfrac{\cos (3t)}{(t^2+a^2)^2}dt.$$ La última igualdad se debe a $t\mapsto \dfrac{\sin (3t)}{(t^2+a^2)^2}$ siendo una función impar y debido a que la integral se calcula sobre un intervalo simétrico.
Además, $$\int \limits _{\gamma _2(n)}\varphi (z)dz=\int \limits _0^\pi \varphi(ne^{i\theta})\cdot ine^{i\theta}d\theta=\int \limits _0^\pi\dfrac{e^{i\cdot 3ne^{i\theta}}ine^{i\theta}}{(n^2e^{2ni\theta }+a^2)^2}d\theta=n\int \limits _0^\pi i\dfrac{e^{i\cdot 3n(\cos (\theta)+i\sin (\theta))}e^{i\theta}}{(n^2e^{2ni\theta }+a^2)^2}d\theta=\\ =n\int \limits _0^\pi i\dfrac{e^{-3n\sin (\theta)}e^{i(3n\cos (\theta)+\theta)}}{(n^2e^{2ni\theta }+a^2)^2}d\theta,$$
de donde se obtiene $$\left \vert\, \int \limits _{\gamma _2(n)}\varphi (z)dz\right \vert\leq n\int \limits _0^\pi \left \vert i\dfrac{e^{-3n\sin (\theta)}e^{i(3n\cos (\theta)+\theta)}}{(n^2e^{2ni\theta }+a^2)^2}\right \vert d\theta =n\int \limits_0^\pi \left \vert\dfrac{e^{-3n\sin (\theta)}}{(n^2e^{2ni\theta }+a^2)^2}\right \vert d\theta=\\=n\int \limits_0^\pi \dfrac{\left \vert e^{-3n\sin (\theta)}\right \vert}{\left \vert n^2e^{2ni\theta }+a^2\right \vert^2}d\theta \underset{(n>a)}{\leq} n\int \limits _0^\pi \dfrac{e^{-3a\sin (\theta)}}{(n^2-a^2)^2}d\theta=\dfrac{n}{(n^2-a^2)^2}\int \limits _0^\pi e^{-3a\sin (\theta)}d\theta\overset{n\to +\infty}{\longrightarrow} 0$$
Tomando el límite en $(*)$ uno finalmente consigue $$\dfrac{\pi e~^{-3a}(3a+1)}{2a^3}=\int \limits_{-\infty}^{+\infty} \dfrac{\cos (3t)}{(t^2+a^2)^2}dt.$$
Debido a la uniformidad de $t\to \dfrac{\cos (3t)}{(t^2+a^2)^2}$ se deduce que $\displaystyle \int \limits_{0}^{+\infty} \dfrac{\cos (3t)}{(t^2+a^2)^2}dt=\dfrac{\pi e~^{-3a}(3a+1)}{4a^3}$ que está de acuerdo con WA .
Me arrepiento de haber empezado esto.