De hecho la sustitución de Weierstrass puede tener uso en odas, por ejemplo para transformar una oda linear de la función trigonométrica coeficientes para una oda linear de polinomio función coeficientes cuyo alquiler $u=\sin kx$ o $u=\cos kx$ no puede trabajar.
Por ejemplo $(a_1\sin x+b_1\cos x+c_1)\dfrac{d^2y}{dx^2}+(a_2\sin x+b_2\cos x+c_2)\dfrac{dy}{dx}+(a_3\sin x+b_3\cos x+c_3)y=0~:$
Que $u=\tan\dfrac{x}{2}$,
Entonces $\dfrac{dy}{dx}=\dfrac{dy}{du}\dfrac{du}{dx}=\dfrac{1}{2}\left(\sec^2\dfrac{x}{2}\right)\dfrac{dy}{du}=\dfrac{1}{2}\left(\tan^2\dfrac{x}{2}+1\right)\dfrac{dy}{du}=\dfrac{u^2+1}{2}\dfrac{dy}{du}$
$\dfrac{d^2y}{dx^2}=\dfrac{d}{dx}\left(\dfrac{u^2+1}{2}\dfrac{dy}{du}\right)=\dfrac{d}{du}\left(\dfrac{u^2+1}{2}\dfrac{dy}{du}\right)\dfrac{du}{dx}=\left(\dfrac{u^2+1}{2}\dfrac{d^2y}{du^2}+u\dfrac{dy}{du}\right)\dfrac{u^2+1}{2}=\dfrac{(u^2+1)^2}{4}\dfrac{d^2y}{du^2}+\dfrac{u(u^2+1)}{2}\dfrac{dy}{du}$
$\therefore\left(\dfrac{2a_1u}{u^2+1}-\dfrac{b_1(u^2-1)}{u^2+1}+c_1\right)\left(\dfrac{(u^2+1)^2}{4}\dfrac{d^2y}{du^2}+\dfrac{u(u^2+1)}{2}\dfrac{dy}{du}\right)+\left(\dfrac{2a_2u}{u^2+1}-\dfrac{b_2(u^2-1)}{u^2+1}+c_2\right)\dfrac{u^2+1}{2}\dfrac{dy}{du}+\left(\dfrac{2a_3u}{u^2+1}-\dfrac{b_3(u^2-1)}{u^2+1}+c_3\right)y=0$
$\dfrac{2a_1u-b_1(u^2-1)+c_1(u^2+1)}{u^2+1}\left(\dfrac{(u^2+1)^2}{4}\dfrac{d^2y}{du^2}+\dfrac{u(u^2+1)}{2}\dfrac{dy}{du}\right)+\dfrac{2a_2u-b_2(u^2-1)+c_2(u^2+1)}{u^2+1}\dfrac{u^2+1}{2}\dfrac{dy}{du}+\dfrac{2a_3u-b_3(u^2-1)+c_3(u^2+1)}{u^2+1}y=0$
$(2a_1u-b_1(u^2-1)+c_1(u^2+1))\left((u^2+1)^2\dfrac{d^2y}{du^2}+2u(u^2+1)\dfrac{dy}{du}\right)+2(2a_2u-b_2(u^2-1)+c_2(u^2+1))(u^2+1)\dfrac{dy}{du}+4(2a_3u-b_3(u^2-1)+c_3(u^2+1))y=0$
$(2a_1u-b_1(u^2-1)+c_1(u^2+1))(u^2+1)^2\dfrac{d^2y}{du^2}+2(2a_1u^2-b_1u(u^2-1)+c_1u(u^2+1)+2a_2u-b_2(u^2-1)+c_2(u^2+1))(u^2+1)\dfrac{dy}{du}+4(2a_3u-b_3(u^2-1)+c_3(u^2+1))y=0$