Conjunto de $t=e^{x-1}$. Necesita demostrar: $$\sqrt{\mathrm{log}(t)(\mathrm{log}(t)+1)+1}\ge \mathrm{log}(\frac{et+e}{2})$ $ $$\Leftrightarrow f(t)=\mathrm{log}^2(t)+\mathrm{log}(t)-\mathrm{log}^2(\frac{t+1}{2})-2\mathrm{log}(\frac{t+1}{2})\ge0$ $ $$\Leftarrow f'(t)\ge0,t\ge1;f'(t)\le0,t\le1$ $ $ $$\Leftrightarrow g(t)\ge0,t\ge1;g(t)\le0,t\le1$de % que $g(t)=(t+1)\mathrm{log}(t)-t\mathrm{log}(\frac{t+1}{2})-\frac{t-1}{2}, t\in(0,+\infty)$.
Ahora nos gustaría probar $g(t)$ aumentar $(0,+\infty)$.
$\displaystyle {g'(t) = \mathrm {registro} (t) + \frac {t+1} {t}-\mathrm {registro}(\frac{t+1}{2})-\frac {t} {t+1}-\frac {1} {2} \\ \qquad = \mathrm {registro} (1 + \frac {t-1} {t+1}) + \frac {t+1} {t}-\frac {t} {t+1}-\frac {1} {2} \\ \qquad\ge\frac{t-1}{2t}+\frac{t+1}{t}-\frac{t}{t+1}-\frac{1}{2}\\ \qquad=\frac{3t+1}{2t(t+1)} > 0} $
Q.E.D.