6 votos

forma cerrada para una serie zeta

No es que difícil derivar \begin{align} \sum^\infty_{k=2}\frac{(-1)^{k-1}\zeta(k)}{k2^k}=&-\frac{\gamma}{2}+\ln\left(\frac{2}{\sqrt{\pi}}\right)\tag{1}\\ \sum^\infty_{k=2}\frac{(-1)^{k-1}\zeta(k)}{(k+1)2^{k+1}}=&-\frac{4+\gamma}{8}+\ln\left(A^{3/2}2^{5/24}\right)\tag{2} \end{align} Por lo tanto, me gustaría saber si existe una forma cerrada en términos de conocer constantes matemáticas para la siguiente serie $$\mathscr{S}=\sum^\infty_{k=2}\frac{(-1)^{k-1}\zeta(k)}{(k+2)2^{k+2}}$$ Como $(1)$ $(2)$ siga inmediatamente a partir de las definiciones de $\Gamma(z)$ $G(z+1)$ respectivamente, mi conjetura es que la evaluación de la $\mathscr{S}$ implica la función de $\Gamma_3(z)$. Lamentablemente, no sabemos casi nada sobre el orden superior de múltiples funciones gamma, y yo realmente apreciaría si alguien me puede ilustrar sobre este asunto y ofrecer una solución viable a la serie anterior. Gracias.


Esto es lo que he conseguido llegar tan lejos. Comenzar con la suma \begin{align} \sum^\infty_{k=2}\frac{(-1)^{k-1}\zeta(k)}{k+1}z^{k+1} =&\sum^\infty_{k=3}\sum^\infty_{m=1}\frac{(-1)^k}{k}\frac{z^{k}}{m^{k-1}}\\ =&\sum^\infty_{m=1}\left\{-m\ln\left(1+\frac{z}{m}\right)-\frac{z^2}{2m}+z\right\}\\ \end{align} Compare esto con $\ln{G(z+1)}$. $$\ln{G(z+1)}=-\frac{z}{2}+\frac{z}{2}\ln(2\pi)-\frac{z^2}{2}-\frac{\gamma z^2}{2}+\sum^\infty_{m=1}\left\{m\ln\left(1+\frac{z}{m}\right)+\frac{z^2}{2m}-z\right\}$$ De ello se sigue que $$\sum^\infty_{k=1}\frac{(-1)^{k-1}\zeta(k)}{k+1}z^{k+1}=-\frac{z}{2}+\frac{z}{2}\ln(2\pi)-\frac{z^2}{2}-\frac{\gamma z^2}{2}-\ln{G(z+1)}$$ Integrar de $0$ $z$para obtener \begin{align} &-\frac{z^2}{2}+\frac{z^2}{2}\ln(2\pi)-\frac{z^3}{2}-\frac{\gamma z^3}{2}-z\ln{G(z+1)}-\sum^\infty_{k=1}\frac{(-1)^{k-1}\zeta(k)}{(k+2)}z^{k+2}\\ =&\sum^\infty_{k=1}\left\{-k(k+z)\ln\left(\frac{k+z}{k}\right)+kz+\frac{z^2}{2}-\frac{z^3}{6k}\right\} \end{align} Después de dejar a $z=\frac12$, no tengo idea de cómo continuar, como cuando me tome la exponencial de la suma parcial, la parte con la $\ln$ plazo no parece telescopio.

10voto

Renan Puntos 6004

Como se ha mencionado por Claude Leibovici, usted tiene

$$ \sum^\infty_{k=2}\frac{(-1)^{k-1}\zeta(k)}{(k+2)2^{k+2}}=-\frac{1}{8}-\frac{\gamma}{24}+\frac{\ln 2}{12}+\frac{\ln A}{2}-\frac{7\zeta(3)}{16 \pi ^2}. \tag1 $$

Aquí es una sugerencia.

Desde el clásico identidad verificada por la función digamma $\displaystyle \psi:=\Gamma'/\Gamma$, los cuales pueden ser obtenidos a partir de Euler producto dando a $\Gamma(x+1)$, usted tiene $$ \psi(x+1) = -\gamma + \sum_{k=1}^{\infty}\frac{x}{k(k+x)}\quad x\neq 0,-1,-2,-3,\dots$$ entonces usted obtener fácilmente, por $|x|<1$, $$ \begin{align} \psi(x+1) & = -\gamma + \sum_{k=1}^{\infty}\frac{x}{k^2}\frac{1}{1+\dfrac{x}{k}} \\ &= -\gamma + \sum_{k=1}^{\infty}\frac{1}{k^2}\sum_{n=0}^{\infty}\frac{(-1)^n}{k^n}x^{n+1} \\ &= -\gamma - \sum_{n=0}^{\infty}(-1)^{n-1} \zeta(n+2){x^{n+1}} \\ &= -\gamma - \sum_{k=2}^{\infty}(-1)^{k-1} \zeta(k){x^{k-1}} \\ \end{align} $$ y $$-\gamma x^2 - x^2\psi(x+1) = \sum_{k=2}^{\infty}(-1)^{k-1} \zeta(k){x^{k+1}}. \tag2$$

El uso de $(2)$ da

$$ \begin{align} \sum^\infty_{k=2}\frac{(-1)^{k-1}\zeta(k)}{(k+2)2^{k+2}}&=\sum_{k=2}^{\infty}(-1)^{k-1} \zeta(k)\int_0^{1/2}\!\!x^{k+1}dx\\ &= \int_0^{1/2}\!\sum_{k=2}^{\infty}(-1)^{k-1} \zeta(k){x^{k+1}}\:dx \\ &= -\gamma \int_0^{1/2}\!x^2 dx - \int_0^{1/2}\! x^2\psi(x+1)\:dx \\ &=-\frac{\gamma}{24} - \int_0^{1/2}\! x^2\psi(x+1)\:dx, \end{align} $$ entonces integrando por partes dos veces conduce a $$ \begin{align} \sum^\infty_{k=2}\frac{(-1)^{k-1}\zeta(k)}{(k+2)2^{k+2}} & = -\frac{\gamma}{24} - \frac14\log \Gamma\left(\frac32\right)+2\int_0^{1/2}\! x\log \Gamma(x+1)\:dx\\ &= -\frac{\gamma}{24} - \frac18\log \pi- \frac14\ln2+\zeta'\left(-1,\frac32\right)+2\int_0^{1/2}\! \zeta'(-1,x+1)\:dx \\ &= -\frac{\gamma}{24}-\frac{1}{8}+\frac{\ln 2}{12}+\frac{\ln A}{2}-\frac{7\zeta(3)}{16 \pi ^2}, \end{align} $$ donde hemos usado la identidad (25.11.34) y en especial los valores de $\zeta'(s,a)$.

1voto

Claude Leibovici Puntos 54392

El uso de un CAS, se obtuvo la siguiente forma cerrada $$ \ mathscr {S} = \ sum ^ \ infty_ {k = 2} \ frac {(- 1) ^ {k-1} \ zeta (k)} {(k 2) 2 ^ {k 2}} = \ frac {\ log (A)} {2} - \ frac {7 \ zeta (3)} {16 \ pi ^ 2} - \ frac {1} {8 } - \ frac {\ gamma} {24} \ frac {\ log (16)} {48} $$

Por cierto, parece que$$\mathscr{S_n}=\sum^\infty_{k=2}\frac{(-1)^{k-1}\zeta(k)}{(k+n)2^{k+n}}$ $ tiene una forma cerrada.

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X