Deje$$\widehat{f}(n)=\frac{1}{2\pi}\int_{-\pi}^{\pi}f(x)e^{-inx}dx.$$ Then, since $ f$ is infinitely differentiable, we have $ \ widehat {f ^ {(k)}} (n) = \ left (en \ right) ^ {k} \ widehat {f} (n )$ Parsevals theorem tells us that $ $\sum_{n=-\infty}^{\infty}\left|\widehat{f}(n)\right|^{2}=\frac{1}{2\pi}\int_{-\pi}^{\pi}\left|f(x)\right|^{2}dx,$ $ and hence combining the fact that $. | f ^ {(k)} (x) | \ leq 1$ along with the formula for $ \ widehat {f ^ {(k)}}$ in terms of $ \ hat {f} (k)$ we have $ $\sum_{n=-\infty}^{\infty}n^{2k}\left|\widehat{f}(n)\right|^{2}\leq1.$ $ Taking $ k$ to infinity implies the only non zero terms are $ n = -1,0,1,$ and we have that $ $f(x)=\widehat{f}(1)e^{ix}+\hat{f}(0)+\hat{f}(-1)e^{-ix}.$$ From here we just have to play around with the other givens until it works out. Since $ ^ f '(0) = 1$, and $ f (x) \ leq 1$, we can argue that $ \ hat {f} (0) = 0$. This then allows us to solve for $ $ f.