6 votos

$\int\sqrt{1-\cos2x}~dx=$ ?

Este es el problema con el que estoy trabajando

$$\int\sqrt{1-\cos2x}~dx$$

Supongo que tendré que utilizar la identidad trigonométrica $2\sin^2x=1-\cos2x$ . Pero, ¿a dónde voy a partir de ahí?

$$\int\sqrt{2\sin^2x}~dx$$

¿Divido el $\sqrt{2}$ y el $\sqrt{\sin^2x}$ para que tenga $$\int\sqrt{2}\sin x~dx$$ ¿y hacer la integración por partes?

7voto

Drew Jolesch Puntos 11

Sí, puedes simplificar como lo hiciste al final, ¡pero no es necesario integrar por partes! Recuerda, $\sqrt 2$ ¡es simplemente una constante!

$$\int \sqrt 2 \sin x \,dx = \sqrt 2 \int \sin x \,dx = -\sqrt 2 \cos x + C$$

Has hecho la "parte más difícil" al reconocer la identidad trigonométrica aquí. El resto es simplemente saber que $\int \sin x = -\cos x + C$

2voto

Felix Marin Puntos 32763

$\newcommand{\+}{^{\dagger}}% \newcommand{\angles}[1]{\left\langle #1 \right\rangle}% \newcommand{\braces}[1]{\left\lbrace #1 \right\rbrace}% \newcommand{\bracks}[1]{\left\lbrack #1 \right\rbrack}% \newcommand{\ceil}[1]{\,\left\lceil #1 \right\rceil\,}% \newcommand{\dd}{{\rm d}}% \newcommand{\ds}[1]{\displaystyle{#1}}% \newcommand{\equalby}[1]{{#1 \atop {= \atop \vphantom{\huge A}}}}% \newcommand{\expo}[1]{\,{\rm e}^{#1}\,}% \newcommand{\fermi}{\,{\rm f}}% \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}% \newcommand{\half}{{1 \over 2}}% \newcommand{\ic}{{\rm i}}% \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow}% \newcommand{\isdiv}{\,\left.\right\vert\,}% \newcommand{\ket}[1]{\left\vert #1\right\rangle}% \newcommand{\ol}[1]{\overline{#1}}% \newcommand{\pars}[1]{\left( #1 \right)}% \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}}% \newcommand{\root}[2][]{\,\sqrt[#1]{\,#2\,}\,}% \newcommand{\sech}{\,{\rm sech}}% \newcommand{\sgn}{\,{\rm sgn}}% \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}}% \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$ Integrar $\verts{\sin\pars{x}}$ por ejemplo, de la siguiente manera.

Con $x > 0$ : \begin {align} & \int_ {0}^{x} \verts { \sin\pars {t}}\, \dd t = x \verts { \sin\pars {x}} - \int_ {0}^{x}t\\N- \sgn\pars { \sin\pars {t}} \cos\pars {t}\, \dd t \\ [3mm]&= x \verts { \sin\pars {x}} - \int_ {0}^{x} \sgn\pars { \sin\pars {t}} \phi ' \pars {t}\, \dd t \quad\mbox {donde} \quad\phi\pars {x} \equiv \int_ {0}^{x}t \cos\pars {t}\, \dd t \\ [3mm] & \int_ {0}^{x} \verts { \sin\pars {t}}\, \dd t = x \verts { \sin\pars {x}} - \sgn\pars { \sin\pars {x}} \phi\pars {x} + \int_ {0}^{x} \phi\pars {t} \bracks {2 \delta\pars { \sin\pars {t}} \cos\pars {t}}\, \dd t \\ [3mm]&= x \verts { \sin\pars {x}} - \sgn\pars { \sin\pars {x}} \phi\pars {x} + 2 \int_ {0}^{x} \phi\pars {t} \sum_ {n = 0}^{n \pi \leq x} \delta\pars {t - n \pi } \cos\pars {t}\, \dd t \\ [3mm]&= x \verts { \sin\pars {x}} - \sgn\pars { \sin\pars {x}} \phi\pars {x} + 2 \sum_ {n = 0}^{n \pi \leq x} \pars {-1}^{n} \phi\pars {n \pi } \end {align} También \begin {align} \phi\pars {x}&=x \sin\pars {x} - \int_ {0}^{x} \sin\pars {t}\, \dd t = x \sin\pars {x} + \cos\pars {x} - 1 \end {align} \begin {align} \int_ {0}^{x} \verts { \sin\pars {t}}\, \dd t = \sgn\pars { \sin\pars {x}} \bracks {1 - \cos\pars {x}} + 2 \sum_ {n = 0}^{n \pi \leq x} \pars {-1}^{n} \bracks { \cos\pars {n \pi } - 1} \end {align} $$\color{#0000ff}{\large% \int_{0}^{x}\verts{\sin\pars{t}}\,\dd t = \sgn\pars{\sin\pars{x}}\bracks{1 - \cos\pars{x}} + 4\sum_{n = 0}^{\pars{2n + 1}\pi \leq x}1} $$

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X