Debido a $2(n+7)-(2n+7)=7$, sabemos que $\gcd(n+7,2n+7)\mid7$.
Desde sólo queremos positivo $n$, esto implica que uno de
$n+7$ $2n+7$ son cuadrados, o
-
$n+7$ $2n+7$ cada $7$ veces un cuadrado.
Caso 1: Vamos A $p^2=n+7$. Entonces necesitamos $q^2=2n-7=2p^2-7$. Esto le da a la ecuación de Pell
$$
2p^2-q^2=7\etiqueta{1}
$$
La ecuación de $(1)$ tiene dos secuencias de soluciones:
$$
(p,q)\in\{\overbrace{\ \ \ (2,1)\ \ \ }^{n=-3},\overbrace{\ \ (8,11)\ \ }^{n=57},\overbrace{\ (46,65)\ }^{n=2109},\dots\}\etiqueta{2}
$$
y
$$
(p,q)\in\{\overbrace{\ \ \ (4,5)\ \ \ }^{n=9},\overbrace{\ (22,31)\ }^{n=477},\overbrace{(128,181)}^{n=16377},\dots\}\etiqueta{3}
$$
Ambos de los cuales satisfacen la recursividad
$$
(p_k,q_k)=6(p_{k-1},q_{k-1})-(p_{k-2},q_{k-2})\etiqueta{4}
$$
Podemos resolver la recursividad $(4)$ $(2)$ con
$$
p_k=\tfrac14\left(4+\sqrt2\right)\left(3+2\sqrt2\right)^k+\tfrac14\left(4-\sqrt2\right)\left(3-2\sqrt2\right)^k\tag{5}
$$
y
$$
q_k=\tfrac12\left(1+2\sqrt2\right)\left(3+2\sqrt2\right)^k+\tfrac12\left(1-2\sqrt2\right)\left(3-2\sqrt2\right)^k\tag{6}
$$
Además, $(5)$ $(6)$ negativos $k$ da $(3)$ negativos $q$.
Por lo tanto, tenemos las soluciones para $n$
$$
\begin{align}
n_k
&=p_k^2-7\\
&=\bbox[5px,border:2px solid #C0A000]{\frac18\left[\left(9+4\sqrt2\right)\left(3+2\sqrt2\right)^{2k}+\left(9-4\sqrt2\right)\left(3-2\sqrt2\right)^{2k}-42\right]}\tag{7}
\end{align}
$$
donde $k\in\mathbb{Z}$. Por ejemplo, si $k\in\{-5,-4,-3,-2,-1,0,1,2,3,4,5\}$,
$$
n_k\in\{18905097,556509,16377,477,9,-3,57,2109,71817,2439837,82882809\}
$$
Caso 2: Deje $7p^2=n+7$. Entonces necesitamos $7q^2=2n+7=14p^2-7$. Como en el anterior, esto conduce a la Ecuación de Pell
$$
2p^2-q^2=1\etiqueta{8}
$$
La ecuación de $(8)$ tiene las soluciones
$$
(p,q)\in\{\overbrace{\ \ \ (1,1)\ \ \ }^{n=0},\overbrace{\ \ \ (5,7)\ \ \ }^{n=168},\overbrace{\ (29,41)\ }^{n=5880},\dots\}\etiqueta{9}
$$
que satisface $(4)$.
Podemos resolver la recursividad $(4)$ $(9)$ con
$$
p_k=\tfrac14\left(2+\sqrt2\right)\left(3+2\sqrt2\right)^k+\tfrac14\left(2-\sqrt2\right)\left(3-2\sqrt2\right)^k\tag{10}
$$
y
$$
q_k=\tfrac14\left(2+2\sqrt2\right)\left(3+2\sqrt2\right)^k+\tfrac14\left(2-2\sqrt2\right)\left(3-2\sqrt2\right)^k\tag{11}
$$
Las fórmulas de $(10)$ $(11)$ con negaitve $k$ acaba de dar a $(9)$ negativos $q$. Por lo tanto, sólo necesitamos considerar $k\ge0$.
$$
\begin{align}
n_k
&=7p_k^2-7\\
&=\bbox[5px,border:2px solid #C0A000]{\frac78\left[\left(3+2\sqrt2\right)^{2k+1}+\left(3-2\sqrt2\right)^{2k+1}-6\right]}\tag{12}
\end{align}
$$
donde $k\in\mathbb{Z}^{\ge0}$. Por ejemplo, si $k\in\{0,1,2,3,4,5\}$,
$$
n_k\in\{0,168,5880,199920,6791568,230713560\}
$$
Cerrado completo y Recursiva Soluciones
La recopilación de los resultados en $(7)$$(12)$, y la indización de monotonía con $k\ge1$, tenemos que la forma cerrada para la lista completa de las soluciones es
$$
\hspace{-8mm}\bbox[5px,border:2px solid #C0A000]{
\begin{bmatrix}n_{3k-2}\\n_{3k-1}\\n_{3k}\end{bmatrix}
=\frac18\left(\,\begin{bmatrix}9-4\sqrt2\\9+4\sqrt2\\21+14\sqrt2\end{bmatrix}\left(3+2\sqrt2\right)^{2k}+\begin{bmatrix}9+4\sqrt2\\9-4\sqrt2\\21-14\sqrt2\end{bmatrix}\left(3-2\sqrt2\right)^{2k}\begin{bmatrix}42\\42\\42\end-{bmatrix}\,\right)}\tag{13}
$$
y recursivo lista de soluciones está dado por
$\scriptsize\begin{bmatrix}n_1\\n_2\\n_3\end{bmatrix}=\begin{bmatrix}9\\57\\168\end{bmatrix},\quad\scriptsize\begin{bmatrix}n_4\\n_5\\n_6\end{bmatrix}=\begin{bmatrix}477\\2109\\5880\end{bmatrix},\quad\scriptsize\begin{bmatrix}n_7\\n_8\\n_9\end{bmatrix}=\begin{bmatrix}16377\\71817\\199920\end{bmatrix},\quad$ y
$$
\bbox[5px,border:2px solid #C0A000]{
\begin{bmatrix}n_{3k+1}\\n_{3k+2}\\n_{3k+3}\end{bmatrix}=35\begin{bmatrix}n_{3k-2}\\n_{3k-1}\\n_{3k}\end{bmatrix}-35\begin{bmatrix}n_{3k-5}\\n_{3k-4}\\n_{3k-3}\end{bmatrix}+\begin{bmatrix}n_{3k-8}\\n_{3k-7}\\n_{3k-6}\end{bmatrix}
}\etiqueta{14}
$$