Supongamos que $$\omega = \left(\sum_{i=1}^{n} x_i^2 \right)^k \mid n >2$$ Find $$ %k para que % $ $$ \sum_{i=0}^{n} \frac{\partial^2 \omega}{\partial x_i^2} = 0 \, \, \, \text{for all} \, \, \, x_i$
Propuso la solución: $$ \frac{\partial \omega}{\partial x_i} =2x_i k\left(\sum_{i=1}^{n} x_i^2 \right)^{k-1} $ $ $$ \frac{\partial^2 \omega}{\partial x_i^2} = (2x_i)^2 k(k-1)\left(\sum_{i=1}^{n} x_i^2 \right)^{k-2} + 2 k\left(\sum_{i=1}^{n} x_i^2 \right)^{k-1} = 2k\left(\sum_{i=1}^{n} x_i^2 \right)^{k-2}\left(2(k-1)x_i^2 + \left(\sum_{i=1}^{n} x_i^2 \right)\right)$ $
Resumen $i$ $$ 2k\left(\sum_{i=1}^{n} x_i^2 \right)^{k-2} \sum_{i=0}^{n}\left(2(k-1)x_i^2 + \left(\sum_{i=1}^{n} x_i^2 \right)\right)$ $ los rendimientos
por eso la suma es 0 iff $$ \sum_{i=0}^{n}\left(2(k-1)x_i^2 + \left(\sum_{i=1}^{n} x_i^2 \right)\right) = 0$ $ $$\sum_{i=0}^{n}(2(k-1)x_i^2 + \left(\sum_{i=1}^{n} x_i^2 \right)) = 2(k-1) \sum_{i=0}^{n} x_i^2 + \sum_{i=0}^{n} \left(\sum_{i=1}^{n} x_i^2 \right) = 2(k-1) \sum_{i=0}^{n} x_i^2 + n \left(\sum_{i=1}^{n} x_i^2 \right)$ $ $$( 2(k-1) + n )\left(\sum_{i=1}^{n} x_i^2 \right) = 0 \to k = 1- \frac{n}{2} $ $
¿Es esto una solución correcta?