Me pide probar que $$\sum\limits_{k=0}^{n}\cos(kx)=\frac{1}{2}+\frac{\sin(\frac{2n+1}{2}x)}{2\sin(x/2)}$$
Tengo algunos avances, pero me he atascado y podría utilizar un poco de ayuda.
Lo que yo hice:
Se sostiene que $$\sum\limits_{k=0}^{n}\cos(kx)=\sum\limits_{k=0}^{n}Re(\cos(kx))=\sum\limits_{k=0}^{n}Re(\cos(x)^{k})=Re(\sum\limits_{k=0}^{n}\cos(x)^{k})=Re(\cos(0)\cdot\frac{\cos(x)^{n}-1}{\cos(x)-1})=Re(\frac{\cos(x)^{n}-1}{\cos(x)-1}) $$
Para cualquier $z_{1},z_{2}\in\mathbb{C}$ tenemos es que si $z_{1}=a+bi,z_{2}=c+di$ a continuación, $$\frac{z_{1}}{z_{2}}=\frac{z_{1}\overline{z2}}{|z_{2}|^{2}}=\frac{(a+bi)(c-di)}{|z_{2}|^{2}}=\frac{ac-bd+i(bc-ad)}{|z_{2}|^{2}}$$ por lo tanto $$Re(\frac{z_{1}}{z_{2}})=\frac{Re(z_{1})Re(z_{2})-Im(z_{1})Im(z_{2})}{|z_{2}|^{2}}$$
Por lo tanto, $$Re(\frac{\cos(x)^{n}-1}{\cos(x)-1})=\frac{(\cos(nx)-1)(\cos(x)-1)-\sin(nx)\sin(x)}{(\cos(x)-1)^{2}+\sin^{2}(x)}=\frac{\cos(nx)\cos(x)-\cos(nx)-\cos(x)+1-\sin(nx)\sin(x)}{\cos^{2}(x)-2\cos(x)+1+\sin^{2}(x)}=\frac{\cos(nx)\cos(x)-\cos(nx)-\cos(x)+1-\sin(nx)\sin(x)}{-2\cos(x)+2}=\frac{\cos(nx)\cos(x)-\cos(nx)-\cos(x)+1-\sin(nx)\sin(x)}{-2(\cos(x)-1)}= \frac{=\cos(nx)\cos(x)-\cos(nx)-\cos(x)+1-\sin(nx)\sin(x)}{-2(-2\cdot\sin^{2}(x/2))}=\frac{\cos(nx)\cos(x)-\cos(nx)-\cos(x)+1-\sin(nx)\sin(x)}{4\sin^{2}(x/2)}=\frac{\cos(nx)\cos(x)-\cos(nx)-\cos(x)+1-\sin(nx)\sin(x)}{4\sin^{2}(x/2)}=\frac{\cos(x(n+1))-\cos(nx)-\cos(x)+1}{4\sin^{2}(x/2)} $$
Esta es la parte donde estoy atascado, me gustaría disfrutar de cualquier ayuda o sugerencia sobre cómo continuar.
Edit: Dado que las correcciones por André puedo conseguir:
$$(\cos(nx+x)-1)(\cos(x)-1)+\sin(nx+x)\sin(x)=\cos(nx+x)\cos(x)-\cos(nx)-\cos(x)+1+\sin(nx+x)\sin(x)$$
por lo $$\cos(nx+x)\cos(x)+\sin(nx+x)\sin(x)=\cos(xn+x-x)-\cos(nx)=0$$
Edit 2: he encontrado anoter error en el anterior, voy a tratar de corregir
Edit 3: Cuando se multiplica correctamente el anterior funciona :-)