Sabiendo que : $$I_n=\int_0^{\frac{\pi}{2}}\cos^n(t) \, dt$$
$$I_{2n}=\frac{1\times 3\times \ldots \times (2n-1)}{2\times 4\times \ldots\times 2n}\times\dfrac{\pi}{2}\quad \forall n\geq 1$$ $$I_{n}\sim \sqrt{\dfrac{\pi}{2n}}$$
Calcular: $$ \lim_{n\to+\infty} \frac{1\times 3\times \ldots \times (2n+1)}{2\times 4\times \ldots\times 2n}\times\dfrac{1}{\sqrt{n}}$$
De hecho,
$$I_{2n}=\frac{1\times 3\times \ldots \times (2n-1)}{2\times 4\times \ldots\times 2n}\times\dfrac{\pi}{2}\quad \forall n\geq 1 \\ \frac{1\times 3\times \ldots \times (2n-1)}{2\times 4\times \ldots\times 2n}=\dfrac{2}{\pi}\times I_{2n}$$
entonces
$$ \begin{align*} \frac{1\times 3\times \cdots \times (2n+1)}{2\times 4\times \cdots\times 2n}\times\dfrac{1}{\sqrt{n}}&=\dfrac{2}{\pi}\times I_{2n}\times (2n+1)\times\dfrac{1}{\sqrt{n}}\\ &=\dfrac{2}{\pi}\times (2n+1)\times\dfrac{1}{\sqrt{n}} \times \sqrt{ \dfrac{2n\times I^{2}_{2n}}{2n} } \\ &=\dfrac{2}{\pi}\times (2n+1)\times\dfrac{1}{ \sqrt{2}\times n} \times \sqrt{ 2n\times I^{2}_{2n} } \\ \end{align*} $$ o $$(2n)I^{2}_{2n}\sim \dfrac{\pi}{2}$$
entonces
\begin{align*} \frac{1\times 3\times \cdots \times (2n+1)}{2\times 4\times \cdots\times 2n}\times\dfrac{1}{\sqrt{n}}&=\dfrac{2}{\pi}\times (2n+1)\times\dfrac{1}{ \sqrt{2}\times n} \times \sqrt{ 2n\times I^{2}_{2n} } \\ &\sim\dfrac{2}{\pi}\times (2n+1)\times\dfrac{1}{ \sqrt{2}\times n} \times \sqrt{ \dfrac{\pi}{2} } \\ \end{align*} $$ Estoy atascado aquí
creo que puedo seguir adelante
\begin{align*} \frac{1\times 3\times \cdots \times (2n+1)}{2\times 4\times \cdots\times 2n}\times\dfrac{1}{\sqrt{n}}&\sim \dfrac{2}{\pi}\times (2n+1)\times\dfrac{1}{ \sqrt{2}\times n} \times \sqrt{ \dfrac{\pi}{2} } \\ &\sim \dfrac{2}{\pi}\times\dfrac{2n}{ \sqrt{2}\times n} \times \sqrt{ \dfrac{\pi}{2} } \\ &\sim \frac{ 2\sqrt{\pi} }{\pi}=\dfrac{2}{\sqrt{\pi}} \end{align*} estoy en lo cierto ? si que lo es hay alguna otra manera