Encontrar a $$\lim_{n \to \infty}\frac{1}{\sqrt{n}}\left[\frac{1}{\sqrt{2}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{6}}+\cdots+\frac{1}{\sqrt{2n}+\sqrt{2n+2}}\right]$ $
MI intento: $$\begin{align} \lim_{n \to \infty} &\frac{1}{\sqrt{n}} \biggl[ \frac{1}{\sqrt{2}+\sqrt{4}} + \frac{1}{\sqrt{4}+\sqrt{6}} + \cdots + \frac{1}{\sqrt{2n}+\sqrt{2n+2}} \biggr] \\ &= \lim_{n \to \infty} \frac{\sqrt{n}}{n} \biggl[ \frac{1}{\sqrt{2}+\sqrt{4}} + \frac{1}{\sqrt{4}+\sqrt{6}} + \cdots + \frac{1}{\sqrt{2n}+\sqrt{2n+2}} \biggr] \end {Alinee el} $$ ahora usando Cauchy primera thm de límites $$ a_n = \frac{\sqrt{n}}{\sqrt{2n}+\sqrt{2n+1}} $$
La respuesta debe ser $\frac{1}{2\sqrt{2}}$.
Pero la respuesta es $1/\sqrt{2}$.