Dejemos que $\arctan x=y-\frac\pi2\implies x=\tan(y-\frac\pi2)=-\tan(\frac\pi2-y)=-\cot y$
y $x\to-\infty, \cot y=\infty\implies y\to 0$
$$\lim_{x\to -\infty}\left(\frac{-2}{\pi}\cdot\arctan{x}\right)^x$$
$$=\lim_{y\to 0}\{\frac{-2}{\pi}(y-\frac\pi2)\}^{-\cot y}=\lim_{y\to 0}\left(1-\frac y{\frac\pi2}\right)^{-\cot y}$$
$$z=\left(1-\frac y{\frac\pi2}\right)^{-\cot y}$$
$$\implies \log z=-\cot y\log\left(1-\frac y{\frac\pi2}\right)=\frac{\cos y}{\left(\frac{-\sin y}{-y}\right)}\frac{\log\left(1-\frac y{\frac\pi2}\right)}{\frac{-y}{\frac\pi2}}\frac2\pi$$
Así que, $$\lim_{y\to 0}\log z=\frac2\pi \frac{\lim_{y\to 0}\cos y}{\lim_{y\to 0}\left(\frac{-\sin y}{-y}\right)}\cdot \lim_{y\to 0}\frac{\log\left(1-\frac y{\frac\pi2}\right)}{\frac{-y}{\frac\pi2}}=\frac2\pi$$
Así que, $$\lim_{y\to 0}z=e^{\frac2\pi}$$