$\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}$
$\ds{\int_{0}^{\infty}{\ln\pars{x} \over \root{x}\pars{x - 1}}\,\dd x}$
\begin{align}&\color{#66f}{\Large%
\int_{0}^{\infty}{\ln\pars{x} \over \root{x}\pars{x - 1}}\,\dd x}
=\int_{0}^{1}{\ln\pars{x} \over \root{x}\pars{x - 1}}\,\dd x
+\int_{1}^{0}{\root{x}\ln\pars{1/x} \over \pars{1/x - 1}}
\,\pars{-\,{\dd x \over x^{2}}}
\\[3mm]&=-2\int_{0}^{1}{\ln\pars{x} \over \root{x}\pars{1 - x}}\,\dd x
=-2\lim_{\mu\ \to\ 0}\partiald{}{\mu}\int_{0}^{1}{x^{\mu - 1/2} - x^{-1/2}
\over 1 - x}\,\dd x
\\[3mm]&=2\lim_{\mu\ \to\ 0}\partiald{}{\mu}\bracks{%
\int_{0}^{1}{1 - x^{\mu - 1/2} \over 1 - x}\,\dd x
-\int_{0}^{1}{1 - x^{-1/2} \over 1 - x}\,\dd x}
\\[3mm]&=2\lim_{\mu\ \to\ 0}\partiald{\Psi\pars{\mu + 1/2}}{\mu}
=2\,\Psi'\pars{\half}=2\,{\pi^{2} \over 2} = \color{#66f}{\LARGE \pi^{2}}
\approx {\tt 9.8696}
\end{align}