8 votos

Evaluar

Necesito evaluar la integral:

$$\int_0^{\infty} x p^xe^{\Large-\frac{x}{a}}\ dx$$

$0<p<1$. Lamentablemente no sé dónde empezar. Trató de integración por las piezas, pero nada consiguió así que agradecería alguna ayuda.

Gracias.

6voto

Escriba $p^x$ $e^{x\ln p}$, entonces \begin{align} \int_0^{\infty} e^{\Large-\frac{x}{a}} x p^x\ dx&=\int_0^{\infty} e^{\Large-\frac{x}{a}} x e^{\large x\ln p}\ dx\\ &=\int_0^\infty xe^{\Large-x\left(\frac{1}{a}-\ln p\right)}\ dx \end {Alinee el} que $u=x\left(\frac{1}{a}-\ln p\right)$, entonces \begin{align} \int_0^\infty xe^{\Large-x\left(\frac{1}{a}-\ln p\right)}\ dx&=\frac{1}{\left(\frac{1}{a}-\ln p\right)^2}\int_0^\infty ue^{-u}\ du\\ &=\frac{a^2}{(1-a\ln p)^2}\Gamma(2)\\ &=\frac{a^2}{(1-a\ln p)^2} \end align {} donde $\displaystyle\int_0^\infty ue^{-u}\ du$ puede evaluarse usando integración por partes o utilizando la función gamma.

6voto

John Fernley Puntos 855

$$\int_0^{\infty} e^{-x/a} x p^x dx = \int_0^{\infty} e^{-x/a} x e^{x \log p} dx = \int_0^{\infty} x e^{x(\log p -1/a)} dx = \frac{1}{(\log p -1/a)^2} $$

Esto es usando este poco de integración por las piezas y asumiendo $\log p < 1/a$

6voto

Jika Puntos 2130

Tu integral es equivalente a:

$$\int_{0}^{\infty}xe^{bx}\mathrm{d}x,$$

donde $b=\dfrac{-1}{a}+\log p$.

4voto

Felix Marin Puntos 32763

$\newcommand{\+}{^{\daga}} \newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle} \newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack} \newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,} \newcommand{\dd}{{\rm d}} \newcommand{\down}{\downarrow} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,{\rm e}^{#1}\,} \newcommand{\fermi}{\,{\rm f}} \newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,} \newcommand{\mitad}{{1 \over 2}} \newcommand{\ic}{{\rm i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\isdiv}{\,\left.\a la derecha\vert\,} \newcommand{\cy}[1]{\left\vert #1\right\rangle} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\pars}[1]{\left (\, nº 1 \,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}} \newcommand{\pp}{{\cal P}} \newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,} \newcommand{\sech}{\,{\rm sech}} \newcommand{\sgn}{\,{\rm sgn}} \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}} \newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert} \newcommand{\wt}[1]{\widetilde{#1}}$ \begin{align}&\color{#c00000}{\int_{0}^{\infty}x\,p^{x}\expo{-x/a}\,\dd x} =p\,\partiald{}{p}\int_{0}^{\infty}p^{x}\expo{-x/a}\,\dd x =p\,\partiald{}{p}\int_{0}^{\infty}\pars{p\expo{-1/a}}^{x}\,\dd x \\[3mm]&=p\,\partiald{}{p}\bracks{{1 \over \ln\pars{p\expo{-1/a}}}\int_{0}^{\infty} \partiald{\pars{p\expo{-1/a}}^{x}}{x}\,\dd x} =p\,\partiald{}{p}\bracks{-1 \over \ln\pars{p\expo{-1/a}}} \\[3mm]&={1 \over \ln^{2}\pars{p\expo{-1/a}}} \end{align}

$$\color{#66f}{\large\int_{0}^{\infty}x\,p^{x}\expo {x/a}\,\dd x ={1 \over \bracks{\ln\pars{p} - 1/a}^{2}}}\,,\qquad 0 <\verts{p\expo{-1/a}} < 1 $$

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X