Si usted quiere encontrar estos números, usted debe buscar en el límite de los valores de la secuencia de números como números de Fibonacci. Por ejemplo, Considere la siguiente secuencia
\begin{equation}
a_n=
\left\{
\begin{array}{cc}
a_{n-3} & n=1(mod \hspace{1mm}2)~,\\ \\
a_{n-3}+ a_{n-2} & n=0(mod \hspace{1mm}2)~.
\end{array}
\right.
\end{equation}
con los siguientes valores iniciales
$$a_0=0~, \hspace{5mm} a_1=1~, \hspace{5mm} a_2=0~.$$
Ahora, tenga en cuenta los valores límite de la $a_n$ secuencia se define de la siguiente manera
$$
\lim_{n\rightarrow\infty}\frac{a_{2n}}{a_{2n+1}}=\alpha_1~,\quad
\lim_{n\rightarrow\infty}\frac{a_{2n+1}}{a_{2n+2}}=\alpha_2~.
$$
con el cálculo, se puede ver que
\begin{equation}
\left\{
\begin{array}{ccc}
\alpha_1 &=& 1.4655712318767680267\, , \\
&&\\
\alpha_2 &=& 0.4655712318767680267\, .
\end{array}
\right.
\end{equation}