Usando integración por partes y el $f(0)=f(1)=0$, tenemos: $$ \int_0^y f(x)dx = \int_0^y(y-x)f'(x) dx$ $ y $$ \int_y^1 f(x)dx = \int_y^1(y-x)f'(x) dx$de % $ % todos $y\in [0,1]$.
Tomando el $y=1/2$ y usando la desigualdad de Cauchy-Schwarz obtenemos: $$ \left(\int_0^{1/2} f(x)dx\right)^2 = \left(\int_0^{1/2}({1/2}-x)f'(x) dx\right)^2 $$ $$\leq \int_0^{1/2}({1/2}-x)^2 dx \int_0^{1/2}(f'(x))^2 dx = \frac{1}{24} \int_0^{1/2}(f'(x))^2 dx$ $ y $$ \left(\int_{1/2}^1 f(x)dx\right)^2 = \left(\int_{1/2}^1({1/2}-x)f'(x) dx\right)^2 $ $ $$\leq \int_{1/2}^1({1/2}-x)^2 dx \int_{1/2}^1(f'(x))^2 dx = \frac{1}{24} \int_{1/2}^1(f'(x))^2 dx.$ $ así:
$$ \frac{1}{2} \left (\int_0^ {1} f (x)dx\right) ^ 2\leq \left (\int_0^ dx\right de {1/2} f (x)) ^ 2 + \left (\int_ {1/2} ^ 1 dx\right de f (x)) ^ 2 $$ % $ de $$\leq \frac{1}{24} \int_0^{1/2}(f'(x))^2 dx+\frac{1}{24} \int_{1/2}^1(f'(x))^2 dx = \frac{1}{24} \int_0^{1}(f'(x))^2 dx.$