Resolver ecuación recursiva:
$$ f_n = \frac{2n-1}{n}f_{n-1}-\frac{n-1}{n}f_{n-2} + 1$$ $f_0 = 0, f_1 = 1$
Lo he hecho hasta ahora:
$$ f_n = \frac{2n-1}{n}f_{n-1}-\frac{n-1}{n}f_{n-2} + 1- [n=0]$$
Había multiplicada por $n$ y he obtenido:
$$ nf_n = (2n-1)f_{n-1}-(n-1)f_{n-2} + n- n[n=0]$$ $$ \sum nf_n x^n = \sum(2n-1)f_{n-1}x^n-\sum (n-1)f_{n-2}x^n + \sum n x^n $$
$$ \sum nf_n x^n = \sum(2n-1)f_{n-1}x^n-\sum (n-1)f_{n-2}x^n + \frac{1}{(1-z)^2} - \frac{1}{1-z} $$
Pero no sé qué hacer con las piezas con $n$. Supongo que puede haber derivación útil o integración, pero no estoy seguro. ¿Cualquier sugerencias?