La suposición $$-\frac{\pi}{2} \leq x,y \leq \frac{\pi}{2}$$
es hermoso. Por qué? Porque entonces podemos usar la sustitución $$\left\{\begin{align} x &= \arctan\alpha \\ y &= \arctan\beta \end{align}\right.$$
Why do we want to use this substitution? Because of the identities $$\begin{align}\sin(\arctan\alpha) &= \frac{\alpha}{\sqrt{1+\alpha^2}} \\ \cos(\arctan\beta) &= \frac{1}{\sqrt{1+\beta^2}}\end{align}$$
Ahora, escriba la nueva ecuaciones en $\alpha,\beta$
$$\begin{align}\frac{\alpha}{\sqrt{1+\alpha^2}} + \frac{1}{\sqrt{1+\beta^2}} &= 0.6 \\ \frac{1}{\sqrt{1+\beta^2}} - \frac{\alpha}{\sqrt{1+\alpha^2}} &= 0.4\end{align}$$
Algunos reorganización que nos pone
$$\begin{align}\frac{(\alpha-0.6)\sqrt{1+\beta^2}+1}{\sqrt{(1+\alpha^2)(1+\beta^2)}} & = 0 \\[2ex] \frac{1-(\alpha+0.4)\sqrt{1+\beta^2}}{\sqrt{(1+\alpha^2)(1+\beta^2)}} &= 0\end{align}$$
Las únicas partes que se hará de las expresiones es null son los numeradores. Poner el $1$ sobre los RHS en ambas ecuaciones, y la plaza de los dos lados. Después de la reorganización de nuevo, usted obtendrá $$\begin{align}\alpha^2 -1.2\alpha + 0.36 &= 1/(1+\beta^2) \\ \alpha^2 + 0.8\alpha + 0.16 & = 1/(1+\beta^2) \end{align}$$
Un posible valor de $\alpha$ viene fácilmente! Sólo resta las dos últimas ecuaciones: $$2\alpha + 0.52 = 0 \implies \fbox{$\alpha = -0.26$}$$
Podemos desentrañar el resto ahora. Divida $P(\alpha) = (\alpha^2 - 1.2\alpha+0.36-1/(1+\beta^2))$ $(\alpha +0.26)$ (como polinomios). Usted debe hacer los cálculos por ti mismo para corroborar, pero el mío dar un cociente $q$ y el resto a $r$ de $$\begin{align}q(\alpha) &= \alpha - 1.46 \\ r(\alpha) &= 0.7396 - \frac{1}{1+\beta^2}\end{align}$$
The remainder must be zero, since we found $\alfa = -0.26$ to be a solution. This gives two pairs of (possible) solutions $(\alpha,\beta) \aprox (-0.26,\pm 0.59337)$. Now, equating the quotient to zero gives a possible value $\alpha = 1.46$. Note that the remainder can also be obtained by substituting in $P(\alpha)$. We could have done this before but we also wanted the quotient which is why we carried out the entire division. Now we don't care about the quotient (it's $(\alpha + 0.26)$), so just substitute and equate to zero to get $$P(1.46) = 0.6244 -\frac{1}{1+\beta^2} = 0$$
This gets you two more pairs of solutions. Now you need to do this entire process over again with the second equation $$\alpha^2 + 0.8\alpha + 0.16 = 1/(1+\beta^2)$$
again starting with $\alfa = -0.26$.
In the end you'll have multiple candidates (I keep saying "possible solutions" or candidates because we have possibly introduced, when we squared the equations, values that don't solve the original equations). Check which ones work with the first $\alpha,\beta$ equations. Since the exercise obviously is to find numerical solutions, going back to $x,y$ is then a simple matter of using the tan^(-1)
key on your calculator (in fact, I already had to use the square root key).
Oh, and $\arctan$ doesn't ever reach $-\pi/2$ or $\pi/2$, so let's check real quick if those are solutions: $$\quad1\neq 0.6 \\ -1 \neq 0.2$$
Nope, no lo son. Hemos cubierto todas las posibilidades ahora.
Edit: me he dado cuenta de un error en restando las dos ecuaciones, el primer valor de alfa (en el cuadro) debería ser $0.1$. Esto cambia los otros resultados, por supuesto, pero voy a editar los tommorow (en total es sólo de problemas cuadráticas).