Su suma puede ser re-escrita en términos de un producto de Euler:
$$\sum_{a=1}^\infty\sum_{b=1}^\infty\sum_{c=1}^\infty\sum_{d=1}^\infty\frac{\mu(a)\mu(b)\mu(c)\mu(d)}{a^2b^2c^2d^2}\gcd(a,b,c,d)^4=\frac{1296}{\pi^8}\prod_{p}(1+\frac{p^4-1}{(p^2-1)^4})\approx .16544\cdots$$
Una prueba puede ser determinado de la siguiente manera:
Primera nota de que,
$$d\mid x_1\wedge d\mid x_2\wedge d\mid x_3\wedge d\mid x_4\iff d\mid \gcd(x_1,x_2,x_3,x_4)$$
Así, obtenemos:$$\sum_{d=1}^\infty f(d)1_{d\mid x_1}1_{d\mid x_2}1_{d\mid x_3}1_{d\mid x_4}=\sum_{d=1}^\infty f(d)1_{d\mid x_1\wedge d\mid x_2\wedge d\mid x_3\wedge d\mid x_4}=\sum_{d=1}^\infty f(d)1_{d\mid \gcd(x_1,x_2,x_3,x_4)}$$
$$=\sum_{d\mid \gcd(x_1,x_2,x_3,x_4)}f(d)$$
Donde $1_{A}=[A]$ Iverson en la notación de corchetes
Definir a continuación:
$$\phi_s(n)=n^s\prod_{p\mid n}(1-\frac{1}{p^s})$$
De modo que tenemos: $(\phi_s*1)(n)=n^s$
Ahora establezca $f=\phi_4$ en la mencionada igualdad y obtenemos que:
$$\sum_{d=1}^\infty \phi_4(d)1_{d\mid x_1}1_{d\mid x_2}1_{d\mid x_3}1_{d\mid x_4}=\gcd(x_1,x_2,x_3,x_4)^4$$
Ahora observamos que:
$$\sum_{x_i=1}^\infty\frac{\mu(x_i)}{x_i^2}1_{d\mid x_i}=\sum_{n=1}^\infty\frac{\mu(dn)}{(dn)^2}=\frac{6}{\pi^2}\frac{\mu(d)}{\phi_2(d)}$$
Luego multiplicando ambos lados de la serie anterior por $\frac{\mu(x_1)}{x_1^2}\frac{\mu(x_2)}{x_2^2}\frac{\mu(x_3)}{x_3^2}\frac{\mu(x_4)}{x_4^2}$ y reordenando se obtiene:
$$\sum_{d=1}^\infty \phi_4(d)(\frac{\mu(x_1)}{x_1^2}1_{d\mid x_1})(\frac{\mu(x_2)}{x_2^2}1_{d\mid x_2})(\frac{\mu(x_3)}{x_3^2}1_{d\mid x_3})(\frac{\mu(x_4)}{x_4^2}1_{d\mid x_4})$$
$$=\frac{\mu(x_1)\mu(x_2)\mu(x_3)\mu(x_4)}{x_1^2x_2^2x_3^2x_4^2}\gcd(x_1,x_2,x_3,x_4)^4$$
Por lo tanto:
$$\sum_{x_1=1}^\infty\sum_{x_2=1}^\infty\sum_{x_3=1}^\infty\sum_{x_4=1}^\infty\frac{\mu(x_1)\mu(x_2)\mu(x_3)\mu(x_4)}{x_1^2x_2^2x_3^2x_4^2}\gcd(x_1,x_2,x_3,x_4)^4$$
$$=(\frac{6}{\pi^2})^4\sum_{d=1}^\infty \phi_4(d)\frac{\mu(d)^4}{\phi_2(d)^4}=\frac{1296}{\pi^8}\sum_{n=1}^\infty\frac{\phi_4(n)}{\phi_2(n)^4}|\mu(n)|=\frac{1296}{\pi^8}\prod_{p}(1+\frac{\phi_4(p)}{\phi_2(p)^4})$$
Por lo tanto tenemos:
$$\sum_{a=1}^\infty\sum_{b=1}^\infty\sum_{c=1}^\infty\sum_{d=1}^\infty\frac{\mu(a)\mu(b)\mu(c)\mu(d)}{a^2b^2c^2d^2}\gcd(a,b,c,d)^4=\frac{1296}{\pi^8}\prod_{p}(1+\frac{p^4-1}{(p^2-1)^4})$$
Un argumento similar se le dará a su segunda suma como $\sum_{a=1}^\infty\sum_{b=1}^\infty\frac{\mu(a)\mu(b)}{a^2b^2}\gcd(a,b)^2=\frac{6}{\pi^2}$.
Además de la fórmula para otros similares generalizaciones.