Demostrar que
$$\int_0^1 {3-\sqrt{5}x\over (1+\sqrt{5}x)^3} \,dx={1\over 2}\tag1$$
Yo:
$u=1+\sqrt{5}x$ $du=\sqrt{5} \, dx$
$${1\over \sqrt 5}\int_1^{1+\sqrt{5}}(4u^{-3}-u^{-2}) \, du$$
$$\left. {1\over \sqrt{5}}(-2u^{-2}+u^{-1}) \right|_1^{1+\sqrt{5}}={1\over 2}$$
Demostrar $(1)$ mediante el uso de un método alternativo distinto del método de sustitución.