$\newcommand{\ángulos}[1]{\left\langle\,{#1}\,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\Li}[1]{\,\mathrm{Li}_{#1}}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
La Pregunta:
$\ds{A_{mn} \equiv
{1 \over \pi}\int_{0}^{\pi}\sin\pars{2m\theta}\,
{1 - \cos^{2n\,}\pars{\theta} \over \tan\pars{\theta}}\,\dd\theta\,,\qquad
m,n \in \llaves{1,2,3,\ldots}}$
\begin{align}
\color{#f00}{A_{mn}} & =
{1 \over 2\pi}\,\Im\int_{-\pi}^{\pi}\expo{2m\ic\theta}\,
{1 - \cos^{2n\,}\pars{\theta} \over \tan\pars{\theta}}\,\dd\theta
\\[3mm] & =
{1 \over 2\pi}\,\Im\oint_{\verts{z} = 1}z^{2m}\,
{1 \over -\ic\pars{z^{2} - 1}/\pars{z^{2} + 1}}\,
\bracks{1 - \pars{z^{2} + 1 \over 2z}^{2n}}\,{\dd z \over \ic z}
\\[3mm] & =
{1 \over 2\pi}\,{1 \over 2^{2n}}\Im\oint_{\verts{z} = 1}z^{2m - 2n - 1}\,\,\,
{z^{2} + 1 \over z^{2} - 1}\,
\bracks{2^{2n}z^{2n} - \pars{z^{2} + 1}^{2n}}\,\dd z\tag{1}
\end{align}
En efecto, como el OP ya afirmó que no hay polos en $\ds{z = \pm 1}$. Así, nos concentramos nuestros esfuerzos con los polos $\ds{\pars{~\mbox{it depends on the particular values of}\ m\ \mbox{and}\ n ~}}$$\ds{z = 0}$. Esto equivale a reescribir $\ds{\pars{1}}$ en una forma conveniente. Es decir,
\begin{align}
\color{#f00}{A_{mn}} & =
{1 \over 2\pi}\,{1 \over 2^{2n}}\Im\oint_{\verts{z} = 1^{-}}
\pars{z^{2m + 1}\ +\ z^{2m - 1}\ }
\sum_{\ell = 0}^{\infty}z^{2\ell}\
\bracks{\sum_{\ell' = 0}^{2n}{2n \choose \ell'}z^{2\pars{\ell' - n}} - 2^{2n}}
\,\dd z
\\[8mm] & =
{1 \over 2\pi}\,{1 \over 2^{2n}}\Im\bracks{%
\sum_{\ell = 0}^{\infty}\,\,\sum_{\ell' = 0}^{2n}{2n \choose \ell'}
\oint_{\verts{z} = 1^{-}}\,\frac{\dd z}{z^{2n - 2\ell' - 2\ell - 2m - 1}}\,\,}
\\[3mm] & +
{1 \over 2\pi}\,{1 \over 2^{2n}}\Im\bracks{%
\sum_{\ell = 0}^{\infty}\,\,\sum_{\ell' = 0}^{2n}{2n \choose \ell'}
\oint_{\verts{z} = 1^{-}}\,\frac{\dd z}{z^{2n - 2\ell' - 2\ell - 2m + 1}}\,\,}
\\[3mm] & -
{1 \over 2\pi}\,{1 \over 2^{2n}}\Im\bracks{%
\sum_{\ell = 0}^{\infty}\underbrace{%
\oint_{\verts{z} = 1^{-}}\,\frac{\dd z}{z^{-2n - 2\ell - 2m - 1}}\,\,}
_{\ds{= 0}}} -
{1 \over 2\pi}\,{1 \over 2^{2n}}\Im\bracks{%
\sum_{\ell = 0}^{\infty}\underbrace{%
\oint_{\verts{z} = 1^{-}}\,\frac{\dd z}{z^{-2n - 2\ell - 2m + 1}}\,\,}
_{\ds{=\ 0}}}
\\[8mm] & =
{1 \over 2^{2n}}\sum_{\ell' = 0}^{2n}{2n \choose \ell'}\sum_{\ell = 0}^{\infty}
\delta_{\ell,n - \ell' - m - 1}\,\,\,\, +
{1 \over 2^{2n}}\sum_{\ell' = 0}^{2n}{2n \choose \ell'}\sum_{\ell = 0}^{\infty}
\delta_{\ell,n - \ell' - m}
\\[3mm] & =
\left.{1 \over 2^{2n}}\sum_{\ell' = 0}^{2n}{2n \choose \ell'}
\right\vert_{\ \ell'\ \leq\ n - m - 1} +
\left.{1 \over 2^{2n}}\sum_{\ell' = 0}^{2n}{2n \choose \ell'}
\right\vert_{\ \ell'\ \leq\ n - m}
\\[3mm] & =
\color{#f00}{\left\lbrace\begin{array}{ccrcl}
\ds{{1 \over 4^{n}}\bracks{-{2n \choose n - m} + 2\sum_{\ell' = 0}^{n - m}{2n \choose \ell'}}} & \mbox{if} & \ds{m} & \ds{<} & \ds{n}
\\[2mm]
\ds{1 \over 4^{n}} & \mbox{if} & \ds{m} & \ds{=} & \ds{n}
\\[2mm]
\ds{0} & \mbox{if} & \ds{m} & \ds{>} & \ds{n}
\end{array}\right.}
\end{align}