$\newcommand{\+}{^{\daga}}
\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\a la derecha\vert\,}
\newcommand{\cy}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
\begin{align}&\color{#c00000}{\int_{0}^{\infty}{\ln\pars{x} \over x^{2} - 1}
\,\dd x}
=2\int_{0}^{1}{\ln\pars{x} \over x^{2} - 1}\,\dd x
=-2\lim_{\mu \to 0}\partiald{}{\mu}\int_{0}^{1}{1 - x^{\mu} \over 1 - x^{2}}\,\dd x
\\[3mm]&=-2\lim_{\mu \to 0}\partiald{}{\mu}
\int_{0}^{1}{1 - x^{\mu/2} \over 1 - x}\,\half\,x^{-1/2}\,\dd x
=-\lim_{\mu \to 0}\partiald{}{\mu}
\int_{0}^{1}{x^{-1/2} - x^{\pars{\mu - 1}/2} \over 1 - x}\,\dd x
\\[3mm]&=\lim_{\mu \to 0}\partiald{}{\mu}\bracks{%
\int_{0}^{1}{1 - x^{-1/2} \over 1 - x}\,\dd x
-\int_{0}^{1}{1 - x^{\pars{\mu - 1}/2} \over 1 - x}\,\dd x}
\\[3mm]&=\lim_{\mu \to 0}\partiald{}{\mu}
\bracks{\Psi\pars{\half} - \Psi\pars{\mu + 1 \over 2}}
\end{align}
donde hemos utilizado la Función Digamma $\ds{\Psi\pars{z}}$ identidad $\ds{\bf\mbox{6.3.22}}$.
\begin{align}&\color{#c00000}{\int_{0}^{\infty}{\ln\pars{x} \over x^{2} - 1}
\,\dd x} = -\,\half\,\Psi'\pars{\half}
\end{align}
Con el PolyGamma Valor Fraccionario de identidad$\ds{\bf\mbox{6.4.4}}$
llegamos $\ds{\Psi'\pars{\half} = {\pi^{2} \over 2}}$:
\begin{align}&\color{#66f}{\large\int_{0}^{\infty}{\ln\pars{x} \over x^{2} - 1}
\,\dd x} = \color{#66f}{\large-\,{\pi^{2} \over 4}} \approx -2.4674
\end{align}