Voy a hacer uso de la serie de $\displaystyle \sum_{n=0}^\infty \frac 1{n+1}$.
y que $\displaystyle \int_0^\infty \frac{ \sin^2 x} x \, dx = \sum_{n=0}^\infty\int_{n\pi}^{(n+1)\pi} \frac{ \sin^2 x} x \,dx$
Si yo uso la sustitución de variables de $t=x-n\pi$ da
$$\tag 1 \sum_{n=0}^\infty\int_0^\pi \frac{\sin^2 t }{n\pi+t}dt $$
da
$$\tag 2\frac 1 \pi\sum_{n=0}^\infty\int_0^\pi \frac{\sin^2 t }{n+1} \, dt$$
$$\tag 3 \frac 1 \pi \int_{n=0}^\pi \sin^2 t \;dt\cdot \sum_{n=0}^\infty \frac 1 {1+n}$$
Realmente no sé cómo explicar esto o lo he hecho. Si alguien sabe cómo solucionar esto.