Probar
$$\int_{-\infty}^{\infty}\frac{1}{(5 \pi^2 + 8 \pi x + 16x^2) }\frac{\cosh\left(x+\frac{\pi}{4} \right)}{\cosh^3(x)}dx = \frac{2}{\pi^3}\left(\pi \cosh\left(\frac{\pi}{4} \right)-4\sinh\left( \frac{\pi}{4}\right) \right)$$
Intento
Tenga en cuenta que
$$\cosh\left( x+\frac{\pi}{4}\right) = \cosh(x)\cosh\left(\frac{\pi}{4} \right)+\sinh(x)\sinh\left( \frac{\pi}{4}\right)$$
Entonces la integral puede escribirse como
$$I = \cosh\left(\frac{\pi}{4} \right)\int_{-\infty}^{\infty}\frac{\mathrm{sech} ^2(x)}{(5 \pi^2 + 8 \pi x + 16x^2) }dx\\+\sinh\left(\frac{\pi}{4} \right)\int_{-\infty}^{\infty}\frac{\sinh(x)}{(5 \pi^2 + 8 \pi x + 16x^2) \cosh(x)^3}dx$$
Luego puede integrar por parte de la segunda integral
$$\int^{\infty}_{-\infty}\left[\frac{\cosh\left(\frac{\pi}{4} \right)}{(5 \pi^2 + 8 \pi x + 16x^2)}-\frac{ 4\sinh\left( \frac{\pi}{4}\right)(\pi+ 4 x)}{(5 \pi^2 + 8 \pi x + 16 x^2)^2}\right]\mathrm{sech}^2(x)\,dx $$
Integrando de nuevo
$$I=-\int^{\infty}_{-\infty}\left[\frac{(8 (4 x + \pi) (32 x + 8 \pi) \sinh(\pi/4))}{(16 x^2 + 8 \pi x + 5 \pi^2)^3} - \frac{(16 \sinh(\pi/4)}{(16 x^2 + 8 \pi x + 5 \pi^2)^2}\\ - \frac{((32 x + 8 \pi) \cosh(\pi/4)}{(16 x^2 + 8 \pi x + 5 \pi^2)^2} \right]\tanh(x)\,dx$$
Tenga en cuenta que
$$\tanh(x) = 8 \sum_{k=1}^\infty \frac{x}{(1 - 2 k)^2 \pi^2 + 4 x^2}$$
Considere la posibilidad de $R(x)$ una función racional, a continuación,
$$\int^{\infty}_{-\infty}R(x) \tanh(x) = 8 \sum_{k=1}^\infty \int^{\infty}_{-\infty}R(x)\frac{x}{(1 - 2 k)^2 \pi^2 + 4 x^2} \,dx$$
Cualquier integrante de la forma podría ser encontrado (creo) usando el teorema de los residuos, a continuación, la suma resultante puede ser evaluado usando la función Digamma.
Pregunta
- Aunque creo que este enfoque resultará en la respuesta correcta siento que el contorno de un método será mucho más fácil, alguna idea ?
- Tal vez hay un método más fácil teniendo en cuenta la agradable forma cerrada ?