6 votos

Muestran que

Mostrar que $$\int_0^\infty e^{-x^2} \sin{2xb}\, dx =e^{-b^2}\int_0^b e^{x^2} \, dx, \, b>0, $ $ necesito ayuda. Hice lo siguiente: Teorema de Cauchy se aplican, siendo $\varphi (x) = e^{-z^2}$ analítica en el plano complejo entero; tomar el rectángulo $0 \leq x \le a, \, 0\le y\le b$. ¿Entonces, $$ 0=\int_0^a e^{-x^2} \, dx + \int_0^b e^{-(a+iy)^2} i \, dy + \int_a^0 e^{-(x+ib)^2} \, dx + \int_b^0 e^{-(-a+iy)^2} i \, dy$ $ $$= \int_0^a e^{-x^2} \, dx - \int_0^b e^{(-a^2-y^2-2ayi)} i \, dy + \int_a^0 e^{(-x^2-2xbi+b^2)} \, dx + \int_b^0 e^{(-a^2+y^2+2ayi)}i \, dy $ $ $$ = \int_0^a e^{-x^2} \, dx -e^{b^2} \int_0^a e^{-x^2} (\cos{(-2bx)}+i\sin{(-2bx)}) \, dx + \left[ -ie^{-a^2}\int_0^b e^{y^2} (e^{2iay}- e^{-2iay} \, dy \right]$ $ $$ = \int_0^a e^{-x^2} \, dx -e^{b^2} \int_0^a e^{-x^2} (\cos{(2bx)}-i\sin{(2bx)}) \, dx + \left[ -ie^{-a^2}\int_0^b e^{y^2} (e^{2iay}- e^{-2iay}) \, dy \right]$ $ $$= \int_0^a e^{-x^2} \, dx -e^{b^2} \int_0^a e^{-x^2} (\cos{(2bx)}-i\sin{(2bx)}) \, dx + 2e^{-a^2}\int_0^b e^{y^2}\sin(2ay) \, dy $ $ que estoy haciendo bien? ¿Alguna sugerencia? Creo que la pregunta deba formularse.

3voto

Ron Gordon Puntos 96158

A la derecha de la idea equivocada de rectángulo. Usted necesita un infinito rectángulo, o, al menos, el límite de uno - porque quieres una integral impropia. Por lo tanto, me gustaría utilizar el rectángulo con vértices $-i b$, $R-i b$, $R+i b$, y $i b$; tomar el límite de $R \to \infty$. Así tenemos

$$\oint_C dz \, e^{-z^2} = 0$$

por Cauchy teorema. Ahora vamos a escribir que el contorno de la integral:

$$\int_0^R dx \, e^{-(x-i b)^2} + i \int_{-b}^b dy \, e^{-(R+i y)^2} \\ + \int_R^0 dx \, e^{-(x+i b)^2} + i \int_b^{-b} dy \, e^{y^2} = 0$$

Tenga en cuenta que la segunda integral se desvanece como $R \to \infty$. La reordenación de las cosas un poco, tengo

$$e^{b^2} \int_0^{\infty} dx \, e^{-x^2} \, e^{i 2 b x} - e^{b^2}\int_0^{\infty} dx \, e^{-x^2} \, e^{-i 2 b x} - i \int_{-b}^b dy \, e^{y^2} = 0$$

a partir de la cual puedo obtener el resultado deseado:

$$\int_0^{\infty} dx \, e^{-x^2} \, \sin{2 b x} = e^{-b^2} \int_0^b dy \, e^{y^2}$$

2voto

Felix Marin Puntos 32763

$\newcommand{\ángulos}[1]{\left\langle #1 \right\rangle}% \newcommand{\llaves}[1]{\left\lbrace #1 \right\rbrace}% \newcommand{\bracks}[1]{\left\lbrack #1 \right\rbrack}% \newcommand{\dd}{{\rm d}}% \newcommand{\ds}[1]{\displaystyle{#1}}% \newcommand{\equalby}[1]{{#1 \cima {= \cima \vphantom{\enorme}}}}% \newcommand{\expo}[1]{\,{\rm e}^{#1}\,}% \newcommand{\ic}{{\rm i}}% \newcommand{\imp}{\Longrightarrow}% \newcommand{\pars}[1]{\left( #1 \right)}% \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}} \newcommand{\pp}{{\cal P}}% \newcommand{\sgn}{\,{\rm sgn}}% \newcommand{\ul}[1]{\underline{#1}}% \newcommand{\verts}[1]{\left\vert #1 \right\vert}% \newcommand{\yy}{\Longleftrightarrow}$

\begin{align} \int_{0}^{\infty}\expo{-x^{2}}\sin\pars{2xb}\,\dd x &= \Im\int_{0}^{\infty}\expo{-\pars{x^{2} - 2\ic bx}}\,\dd x = \Im\int_{0}^{\infty}\expo{-\pars{x - \ic b}^{2} - b^{2}}\,\dd x \\[3mm]&= \expo{-b^{2}}\Im\int_{-\ic b}^{\infty - \ic b}\expo{-x^{2}}\,\dd x \\[3mm]&= \expo{-b^{2}}\Im\bracks{% \int_{0}^{\infty}\expo{-x^{2}}\,\dd x + \int_{-b}^{o}\expo{-\pars{\ic x}^{2}}\, \pars{\ic \dd x}} = \expo{-b^{2}}\int_{-b}^{0}\expo{x^{2}}\,\dd x \\[5mm]& \end{align} $${\large% \int_{0}^{\infty}\expo{-x^{2}}\sin\pars{2xb}\,\dd x = \expo{-b^{2}}\int_{0}^{b}\expo{x^{2}}\,\dd x} $$

1voto

Jez Puntos 469

Ajuste $$ f (t) = e ^ {t ^ 2} \int_0^\infty e ^ {-x ^ 2} \,dx \sin (2tx), $$ tenemos cada $t>0$:\begin{eqnarray} f'(t)&=&2tf(t)+e^{t^2}\int_0^\infty 2xe^{-x^2}\cos(2tx)\,dx\\ &=&2tf(t)-e^{t^2}\left[e^{-x^2}\cos(2tx)\right]_0^\infty-2te^{t^2}\int_0^\infty e^{-x^2}\sin(2tx)\,dx\\ &=&2tf(t)+e^{t^2}-2tf(t)=e^{t^2}. \end{eqnarray} por lo tanto, cada $0<\varepsilon<b$ tenemos $$ e ^ {-b ^ 2} f (b) = e ^ {-b ^ 2} \left [f (\varepsilon) + \int_\varepsilon^b e ^ {x ^ 2} \,dx\right]. $$ % De dejar $\varepsilon \downarrow 0$obtenemos: $$ \int_0^\infty e ^ {-x ^ 2} \,dx=e^ \sin (2bx) {-b ^ 2} f (b) = e ^ {-b ^ 2} \int_0^b e ^ {x ^ 2} \, dx. $$

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X