$\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\dd}{{\rm d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\dsc}[1]{\displaystyle{\color{red}{#1}}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\Li}[1]{\,{\rm Li}_{#1}}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}$
\begin{align}
\sum_{x_{1} = 0}^{\infty}\sum_{x_{2} = 0}^{\infty}\sum_{x_{3} = 0}^{\infty}
\delta_{2x_{1}\ +\ x_{2}\ +\ x_{3},\ n} & =
\sum_{x_{1} = 0}^{\infty}\sum_{x_{2} = 0}^{\infty}\sum_{x_{3} = 0}^{\infty}\
\overbrace{%
\oint_{\verts{z} = 1^{-}}{1 \over z^{n + 1 - 2x_{1} - x_{2} - x_{3}}}
\,{\dd z \over 2\pi\ic}}^{\ds{\delta_{2x_{1}\ +\ x_{2}\ +\ x_{3},\ n}}}
\\[3mm] & =
\oint_{\verts{z} = 1^{-}}{1 \over z^{n + 1}}
\sum_{x_{1} = 0}^{\infty}\pars{z^{2}}^{x_{1}}
\sum_{x_{2} = 0}^{\infty}z^{x_{2}}\sum_{x_{3} = 0}^{\infty}z^{x_{3}}
\,{\dd z \over 2\pi\ic}
\\[3mm] & =
\oint_{\verts{z} = 1^{-}}{1 \over z^{n + 1}}\,{1 \over 1 - z^{2}}\,
{1 \over 1 - z}\,{1 \over 1 - z}\,{\dd z \over 2\pi\ic}
\\[3mm] & =
\oint_{\verts{z} = 1^{-}}{1 \over z^{n + 1}}\,{1 \over \pars{1 - z}^{3}}
{1 \over 1 + z}\,{\dd z \over 2\pi\ic}
\\[3mm] &=
\oint_{\verts{z} = 1^{-}}{1 \over z^{n + 1}}
\sum_{\ell = 0}^{\infty}{-3 \choose \ell}\pars{-1}^{\ell}z^{\ell}
\sum_{\ell' = 0}^{\infty}\pars{-1}^{\ell'}z^{\ell'}\,{\dd z \over 2\pi\ic}
\\[3mm] &=
\sum_{\ell = 0}^{\infty}{-3 \choose \ell}\pars{-1}^{\ell}
\sum_{\ell' = 0}^{\infty}\pars{-1}^{\ell'}\ \overbrace{\oint_{\verts{z} = 1^{-}}
{1 \over z^{n - \ell - \ell' + 1}}\,{\dd z \over 2\pi\ic}}
^{\ds{\delta_{\ell',n - \ell}}}
\\[3mm] & =
\pars{-1}^{n}\sum_{\ell = 0}^{n}{-3 \choose \ell} =
\pars{-1}^{n}\sum_{\ell = 0}^{n}{\ell + 2 \choose \ell}\pars{-1}^{\ell}
\\[3mm] & =
\half\,\pars{-1}^{n}
\sum_{\ell = 0}^{n}\pars{-1}^{\ell}\pars{\ell + 2}\pars{\ell + 1} =
{1 \over 8}\bracks{2n^{2} + 8n + 7 + \pars{-1}^{n}}
\\[3mm] & =
\color{#f00}{\left\lbrace\begin{array}{lcl}
{1 \over 4}\pars{n + 2}^{2} & \mbox{if} & n\ \mbox{is even}
\\
{1 \over 4}\,\pars{n + 1}\pars{n + 3} & \mbox{if} & n\ \mbox{is odd}
\end{array}\right.}
\end{align}