Demostrar que
$$\int_{0}^{1}{x-x^3+x^5-x^7\over (1+x^4)\ln{x}}dx=-\ln{2}$$
Mi pruebe
$x-x^2+x^3+x^5-x^7=x(1-x^2)+x^5(1-x^2)=x(1+x^4)(1-x^2)$
$$\int_{0}^{1}{x(1+x^4)(1-x^2)\over (1+x^4)\ln{x}}dx$$
Aplicar el teorema de Frullani
$$\int_{0}^{1}{x-x^3\over \ln{x}}dx$$
$$\int_{0}^{1}{x-x^3\over \ln{x}}dx=-\ln{2}$$