$\newcommand{\ángulos}[1]{\left\langle\,{#1}\,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\Li}[1]{\,\mathrm{Li}_{#1}}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
De ahora en adelante, voy a utilizar las identidades:
$$
\left\lbrace\begin{array}{rcl}
\ds{a \choose b} & \ds{=} & \ds{{-a + b - 1 \choose b}\pars{-1}^{b}
\,,\quad b \in \mathbb{Z}}
\\[5mm]
\ds{a \choose b} & \ds{=} &
\ds{\oint_{\verts{z} = 1^{-}}{\pars{1 + z}^{a} \over z^{b + 1}}
\,{\dd z \over 2\pi\ic}\,,\quad b \in \mathbb{Z}}
\\[5mm]
\ds{\pars{1 + z}^{a}} & \ds{=} & \ds{\sum_{b = 0}^{\infty}{a \choose b}z^{b}\,,
\quad\verts{z} < 1}
\end{array}\right.
$$
\begin{align}
&\color{#f00}{\sum_{k = 0}^{n}{x + n - k - 1 \choose n - k}
{y + k - 1 \choose k}} =
\sum_{k = 0}^{\infty}\bracks{{-x \choose n - k}\pars{-1}^{n - k}}
\bracks{{-y \choose k}\pars{-1}^{k}}
\\[5mm] = &
\pars{-1}^{n}\sum_{k = 0}^{n}{-y \choose k}\oint_{\verts{z} = 1^{-}}
{\pars{1 + z}^{-x} \over z^{n - k + 1}}\,{\dd z \over 2\pi\ic} =
\pars{-1}^{n}\oint_{\verts{z} = 1^{-}}
{\pars{1 + z}^{-x} \over z^{n + 1}}\sum_{k = 0}^{\infty}{-y \choose k}z^{k}\,{\dd z \over 2\pi\ic}
\\[5mm] = &\
\pars{-1}^{n}\oint_{\verts{z} = 1^{-}}
{\pars{1 + z}^{-x - y} \over z^{n + 1}}\,{\dd z \over 2\pi\ic} =
\pars{-1}^{n}{-x - y \choose n} =
\pars{-1}^{n}{x + y + n - 1 \choose n}\pars{-1}^{n}
\\[5mm] = &\
\color{#f00}{{x + y + n - 1 \choose n}}
\end{align}