Podría ser una solución más fácil la explotación de la simetría, pero la que sigue es lo que se me ocurrió:
\begin{align*}
\int_{0}^{\pi/2} \frac{x\tan x}{\sec x + \tan x} \, {\rm d}x &= \int_{0}^{\pi/2} \frac{x \tan x}{\frac{1}{\cos x} + \frac{\sin x}{\cos x}} \, {\rm d}x \\
&= \int_{0}^{\pi/2} \frac{x \cos x \frac{\sin x}{\cos x}}{1+\sin x} \, {\rm d}x\\
&= \int_{0}^{\pi/2} \frac{x \sin x}{1+ \sin x} \, {\rm d}x \\
&=\int_{0}^{\pi/2} \frac{\left ( \frac{\pi}{2}-x \right ) \cos x}{1+\cos x} \, {\rm d}x \\
&= \frac{\pi}{2} \int_{0}^{\pi/2} \frac{\cos x}{1+ \cos x} \, {\rm d}x - \int_{0}^{\pi/2} \frac{x \cos x}{1+ \cos x} \, {\rm d}x \\
&= \frac{\pi^2-2\pi}{4} + \frac{\pi}{2} - \frac{\pi^2}{8} -\log 2 \\
&= \frac{\pi^2}{8} - \log 2
\end{align*}
La última de las integrales de pie son triviales. Si es necesario puedo agregar una derivación.
Addendum:
Para la primera integral tenemos que:
\begin{align*}
\int_{0}^{\pi/2} \frac{\cos x}{1+\cos x} \, {\rm d}x &=\int_{0}^{\pi/2} \frac{\cos x+1 -1}{1+ \cos x} \, {\rm d}x \\
&= \int_{0}^{\pi/2} \left ( 1 - \frac{1}{1+ \cos x} \right ) \, {\rm d}x \\
&= \frac{\pi}{2} - \int_{0}^{\pi/2} \frac{{\rm d}x}{1+ \cos x} \\
&= \frac{\pi}{2} - \int_{0}^{\pi/2} \frac{{\rm d}x}{2\cos^2 \left ( \frac{x}{2} \right )} \\
&= \frac{\pi}{2} - \left [\tan \frac{x}{2} \right ]_0^{\pi/2} \\
&= \frac{\pi}{2} - \tan \frac{\pi}{4} \\
&= \frac{\pi}{2}-1
\end{align*}
y
\begin{align*}
\int_{0}^{\pi/2} \frac{x \cos x}{1+\cos x} \, {\rm d}x &= \int_{0}^{\pi/2} \frac{x (\cos x+1) -x}{1+\cos x} \, {\rm d}x \\
&= \int_{0}^{\pi/2} x \, {\rm d}x - \int_{0}^{\pi/2} \frac{x}{1+ \cos x} \, {\rm d}x\\
&= \left [ \frac{x^2}{2} \right ]_0^{\pi/2} - \int_{0}^{\pi/2} \frac{x}{1+\cos x} \, {\rm d}x\\
&= \frac{\pi^2}{8} - \left [ x \tan \left ( \frac{x}{2} \right ) \right ]_0^{\pi/2} + \int_{0}^{\pi/2} \tan \left ( \frac{x}{2} \right ) \, {\rm d}x \\
&=\frac{\pi^2}{8} - \frac{\pi}{2} - \left [ 2 \log \cos \frac{x}{2} \right ]_0^{\pi/2} \\
&= \frac{\pi^2}{8} - \frac{\pi}{2} - 2 \log \cos \frac{\pi}{4} \\
&= \frac{\pi^2}{8} - \frac{\pi}{2} + \log 2
\end{align*}
ya es bien sabido que $\displaystyle \int \frac{{\rm d}x}{1+ \cos x} = \tan \frac{x}{2}+c, \; c \in \mathbb{R}$ y
$$\int \tan \frac{x}{2} \, {\rm d}x = \int \frac{\sin \frac{x}{2}}{\cos \frac{x}{2}} \, {\rm d}x = -\frac{1}{2}\int \frac{\left ( \cos \frac{x}{2} \right )'}{\cos \frac{x}{2}} \, {\rm d}x = - 2 \log \cos \frac{x}{2} + c , \; c \in \mathbb{R}$$