Cómo podemos encontrar la integral: %#% $ de #% he intentado encontrar y lo $$\int_{ - \infty }^{ + \infty } {\frac{1} {1 + {x^4}}} \;{\mathrm{d}}x$. ¿Estoy correcto? Por favor me ayude con un método adecuado. He intentado utilizar la suma del residuo.
Respuestas
¿Demasiados anuncios?Puesto que el integrando es una función uniforme, podemos reescribirla como\begin{equation} \int_{-\infty}^\infty\dfrac{1}{1+x^4}\ dx=2\int_{0}^\infty\dfrac{1}{1+x^4}\ dx \end{equation} en general, tenemos (haga clic en la fórmula a continuación para la prueba) \begin{equation} \int_0^\infty\dfrac{1}{1+x^n}\ dx=\frac{\pi}{n\sin\left(\frac{\pi}{n}\right)},\qquad\mbox{for}\qquad n>0 \end{equation} para el enfoque de residuo, que puede hacer referencia a este enlace.
$\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle} \newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack} \newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,} \newcommand{\dd}{{\rm d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\dsc}[1]{\displaystyle{\color{#c00000}{#1}}} \newcommand{\expo}[1]{\,{\rm e}^{#1}\,} \newcommand{\fermi}{\,{\rm f}} \newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,} \newcommand{\mitad}{{1 \over 2}} \newcommand{\ic}{{\rm i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\Li}[1]{\,{\rm Li}_{#1}} \newcommand{\pars}[1]{\left (\, nº 1 \,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}} \newcommand{\pp}{{\cal P}} \newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,} \newcommand{\sech}{\,{\rm sech}} \newcommand{\sgn}{\,{\rm sgn}} \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}} \newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}$ \begin{align}&\color{#66f}{\large\int_{-\infty}^{\infty}{\dd x \over x^{4} + 1}} =2\int_{0}^{\infty}{\dd x \over x^{2} + 1/x^{2}}\,{1 \over x^{2}}\,\dd x\ =\ \underbrace{\overbrace{% 2\int_{0}^{\infty}{1 \over \pars{x - 1/x}^{2} + 2}\,{1 \over x^{2}}\,\dd x} ^{\ds{\color{#c00000}{x\ \mapsto\ {1 \over x}}}}}_{\ds{\color{#00f}{{\cal I}_{0}}}} \\[5mm]&=2\int_{\infty}^{0}{1 \over \pars{1/x - x}^{2} + 2}\,x^{2}\, \pars{-\,{\dd x \over x^{2}}} =\underbrace{2\int_{0}^{\infty}{1 \over \pars{x - 1/x}^{2} + 2}\,\dd x} _{\ds{\color{#00f}{{\cal I}_{1}}}} \end{align}
Como $\ds{\color{#00f}{{\cal I}_{0}}\ \mbox{and}\ \color{#00f}{{\cal I}_{1}}}$ es igual a la integral original, tendremos:
\begin{align}&\color{#66f}{\large\int_{-\infty}^{\infty}{\dd x \over x^{4} + 1}} ={\color{#00f}{{\cal I}_{0}} + \color{#00f}{{\cal I}_{1}} \over 2} =\int_{0}^{\infty}{1 \over \pars{x - 1/x}^{2} + 2}\,\pars{1 + {1 \over x^{2}}} \,\dd x \\[5mm]&=\overbrace{\int_{x\ =\ 0}^{x\ \to\ \infty}{1 \over \pars{x - 1/x}^{2} + 2} \,\dd\pars{x - {1 \over x}}} ^{\ds{\color{#c00000}{t \equiv x - {1 \over x}}}} =\int_{-\infty}^{\infty}{\dd t \over t^{2} + 2} =\root{2}\ \overbrace{\int_{0}^{\infty}{\dd t \over t^{2} + 1}} ^{\ds{\color{#c00000}{\pi \over 2}}} =\color{#66f}{\large{\root{2} \over 2}\,\pi} \end{align}
Considerar el contorno, que es el semicírculo (origen en $0$% y radio $R$), más precisamente:
$$\gamma=\{Re^{it}:t \in [0,\pi] \} \cup [-R,R]$$
Según el teorema del residuo:
$$\oint_{\gamma}\frac{1}{x^4+1}dz=2\pi i (\text{Res}_{b}\frac{1}{x^4+1}+\text{Res}_{a}\frac{1}{x^4+1})$$
Donde $a=e^{\pi i/4}$ y $b=e^{2\pi i /4}$
Pero por otro lado:
$$\oint_{\gamma}\frac{1}{x^4+1}dz=\int_{-R}^{R}\frac{1}{x^4+1}dz+\int_{\gamma'(R)}\frac{1}{x^4+1}dz$$
donde $\gamma'(R)=\{Re^{it}:t \in [0,\pi] \}$.
Vamos a intentar calcular $\int_{\gamma'(R)}\frac{1}{x^4+1}dz$, por ejemplo usando parametrización simple:
$$\int_{\gamma'(R)}\frac{1}{x^4+1}dz=i\int_{0}^{\pi}Re^{it}\frac{1}{1+R^4e^{4it}}dt$$
Ha claro:
$$\left|Re^{it}\frac{1}{1+R^4e^{4it}}\right| \to 0$$
cuando $R \to \infty$ $t \in [0,\pi]$, así que cuando $R \to \infty$:
$$0=\lim_{R \to \infty}\int_{\gamma'(R)}\frac{1}{x^4+1}dz=\lim_{R \to \infty}\oint_{\gamma}\frac{1}{x^4+1}dz-\int_{-R}^{R}\frac{1}{x^4+1}dz= \\ = \oint_{\gamma}\frac{1}{x^4+1}dz-\int_{-\infty}^{\infty}\frac{1}{x^4+1}dz$$
En primer lugar, utilice el cambio de la variable $x=\frac{1}{u} => dx = -\frac{1}{u^2}du $
$I = \int_{ - \infty }^{ + \infty } {\frac{1} {1 + {x^4}}} \;{\mathrm{d}}x = 2*\int_{ 0 }^{ + \infty } {\frac{1} {1 + {x^4}}} \;{\mathrm{d}}x = 2*\int_{ 0 }^{ + \infty } {\frac{u^2} {1 + {u^4}}} \;{\mathrm{d}}u $
=> $2*I = 2*\int_{ 0 }^{ + \infty } {\frac{1+x^2} {1 + {x^4}}} \;{\mathrm{d}}x => I= \int_{ 0 }^{ + \infty } {\frac{1+x^2} {1 + {x^4}}} \;{\mathrm{d}}x $
Ahora: Deja: $t= x-\frac{1}{x}$ => $dt= \frac{1+x^2}{x^2}dx $ x-> 0, t-> $-\infty$; x->$+\infty$ , t->$+\infty$
=> $ I = \int_{ - \infty }^{ + \infty } {\frac{1+x^2} {1 + {x^4}}*\frac{x^2}{1+x^2}} \;{\mathrm{d}}t = \int_{ - \infty }^{ + \infty } {\frac{1} {x^{-2} + {x^2}}} \;{\mathrm{d}}t$
$ x^2 + x^{-2} = (x-\frac{1}{x})^2 +2 = t^2 +2 $
=> $ I = \int_{ - \infty }^{ + \infty } {\frac{1} {2 + {t^2}}} \;{\mathrm{d}}t $
Deje que: t = $\sqrt{2}*v$
$I = \frac{1}{2}*\int_{ - \infty }^{ + \infty } {\frac{1} {1 + {(\frac{t}{\sqrt{2}})^2}}} \;{\mathrm{d}}t = \frac{1}{\sqrt{2}}*\int_{ - \infty }^{ + \infty } {\frac{1} {1 + {v^2}}} \;{\mathrm{d}}v = \frac{\pi}{\sqrt{2}}$