Deje $n$ es el grado de $f$, y deje $V_n$ $\mathbb{Q}$- espacio vectorial de polinomios de grado menor que $n$. El espacio vectorial de dimensión de $V_n$$n$. Considere la posibilidad de $n + 1$ monomials$$x^{p_1}, x^{p_2}, \dots, x^{p_{n+1}},$$where $p_1, p_2, \dots, p_{n+1}$ are arbitrary $n+el 1$ distinct prime numbers. Consider their remainders modulo $f$. They are $n + el 1$ elements of $V_n$, and thus they are linearly dependent. Hence, there are $a_1, a_2, \dots, a_{n+1} \in \mathbb{Q}$ such that$$h(x) = a_1x^{p_1} + a_2x^{p_2} + \dots + a_{n+1}x^{p_{n+1}}$$is divisible by $f$. Clearly, we can assume that $a_1, a_2, \dots, a_{n+1} \in \mathbb{Z}$. Thus, $g$ is the quotient of $h$ by $f$. Scaling $h$ by a proper integer factor, we can also assume that $g \in \mathbb{Z}[x]$ si es necesario.