Voy a seguir a corto y tomar sólo un extracto (parte más importante) de la edad de la tarea.
$$\frac{n(n+1)(2n+1)}{6}+(n+1)^2= \frac{(n+1)(n+2)(2n+3)}{6}$$
Lo que he hecho es mucho trabajo y mucho tiempo, tengo que "simplemente" resuelto. Pero creo que con mucho menos trabajo, no sería una forma más fácil y rápida. Es sólo que no la veo : /
Si alguien quiere ver, aquí está mi solución de largo que yo no soy feliz con:
$$\frac{n(n+1)(2n+1)+6(n+1)^2}{6}=\frac{(n^2+2n+n+2)(2n+3)}{6} \Leftrightarrow$$
$$\Leftrightarrow \frac{(2n^3+n^2+2n^2+n)+6n^2+12n+6}{6} = \frac{(n^2+3n+2)(2n+3)}{6} \Leftrightarrow$$
$$\Leftrightarrow \frac{2n^3+3n^2+n+6n^2+12n+6}{6}=\frac{2n^3+3n^2+6n^2+9n+4n+6}{6} \Leftrightarrow$$
$$\Leftrightarrow \frac{2n^3+9n^2+13n+6}{6}=\frac{2n^3+9n^2+13n+6}{6}$$