Aunque es tedioso, se pueden utilizar fracciones parciales para obtener:
$\displaystyle\sum_{n = 1}^{\infty}\dfrac{1}{(4n^2-1)^4}$ $= \dfrac{5}{32}\displaystyle\sum_{n = 1}^{\infty}\left(\dfrac{1}{2n+1}-\dfrac{1}{2n-1}\right)$ $+\dfrac{5}{32}\displaystyle\sum_{n = 1}^{\infty}\left(\dfrac{1}{(2n+1)^2}+\dfrac{1}{(2n-1)^2}\right)$ $+\dfrac{1}{8}\displaystyle\sum_{n = 1}^{\infty}\left(\dfrac{1}{(2n+1)^3}-\dfrac{1}{(2n-1)^3}\right)$ $+\dfrac{1}{16}\displaystyle\sum_{n = 1}^{\infty}\left(\dfrac{1}{(2n+1)^4}+\dfrac{1}{(2n-1)^4}\right)$ .
El primer y el tercer sumando se telescopian a $-1$ .
Desde $\displaystyle\sum_{n = 1}^{\infty}\dfrac{1}{n^2} = \zeta(2) = \dfrac{\pi^2}{6}$ tenemos $\displaystyle\sum_{n = 1}^{\infty}\dfrac{1}{(2n)^2} = \sum_{n = 1}^{\infty}\dfrac{1}{4n^2} = \dfrac{1}{4}\zeta(2) = \dfrac{\pi^2}{24}$ .
Por lo tanto, $\displaystyle\sum_{n = 1}^{\infty}\dfrac{1}{(2n-1)^2} = \dfrac{\pi^2}{6}-\dfrac{\pi^2}{24} = \dfrac{\pi^2}{8}$ y $\displaystyle\sum_{n = 1}^{\infty}\dfrac{1}{(2n+1)^2} = \dfrac{\pi^2}{8} - 1$ .
Puedes hacer algo similar para la cuarta suma.