19 votos

¿Cuál es el volumen de la $3$-dimensiones elliptope?

Mi pregunta

Calcular la siguiente integral doble analíticamente

$$\int_{-1}^1 \int_{-1}^1 2 \sqrt{x^2 y^2 - x^2 - y^2 + 1} \,\, \mathrm{d} x \mathrm{d} y$$


De fondo

El $3$-dimensiones elliptope es el spectrahedron define de la siguiente manera

$$\mathcal E_3 := \Bigg\{ (x_{12}, x_{13}, x_{23}) \in \mathbb R^3 : \begin{bmatrix} 1 & x_{12} & x_{13}\\ x_{12} & 1 & x_{23}\\ x_{13} & x_{23} & 1\end{bmatrix} \succeq 0 \Bigg\}$$

Using Sylvester's criterion for positive semidefiniteness (i.e., all $2^3-1 = 7$ principal minors are nonnegative), we obtain $1 \geq 0$ (three times), the three quadratic inequalities

$$1 - x_{12}^2 \geq 0 \qquad \qquad \qquad 1 - x_{13}^2 \geq 0 \qquad \qquad \qquad 1 - x_{23}^2 \geq 0$$

and the cubic inequality.

$$\det \begin{bmatrix} 1 & x_{12} & x_{13}\\ x_{12} & 1 & x_{23}\\ x_{13} & x_{23} & 1\end{bmatrix} = 1 + 2 x_{12} x_{13} x_{23} - x_{12}^2 - x_{13}^2 - x_{23}^2 \geq 0$$

Thus, $\mathcal E_3$ is contained in the cube $[-1,1]^3$. Borrowing the pretty figure in Eisenberg-Nagy & Laurent & Varvitsiotis, here is an illustration of $\mathcal E_3$

enter image description here

What is the volume of $\mathcal E_3$?


Motivation

Why is $\mathcal E_3$ interesting? Why bother? Because $\mathcal E_3$ gives us the set of $3 \times 3$ correlation matrices.


My work

For convenience,

$$x := x_{12} \qquad\qquad\qquad y := x_{13} \qquad\qquad\qquad z := x_{23}$$

I started with sheer brute force. Using first Haskell and then Python, I discretized the cube $[-1,1]^3$ and counted the number of points inside the elliptope. I got an estimate of the volume of $\aprox 4.9$.

I then focused on the cubic surface of the elliptope

$$\det \begin{bmatrix} 1 & x & y\\ x & 1 & z\\ y & z & 1\end{bmatrix} = 1 + 2 x y z - x^2 - y^2 - z^2 = 0$$

which I rewrote as follows

$$z^2 - (2 x y) z + (x^2 + y^2 - 1) = 0$$

Using the quadratic formula, I obtained

$$z = x y \pm \sqrt{x^2 y^2 - x^2 - y^2 + 1}$$

Integrating using Wolfram Alpha,

$$\int_{-1}^1 \int_{-1}^1 2 \sqrt{x^2 y^2 - x^2 - y^2 + 1} \,\, \mathrm{d} x \mathrm{d} y = \cdots \color{gray}{\text{(magic happens)}} \cdots = \color{blue}{\frac{\pi^2}{2} \approx 4.9348}$$

I still would like to compute the double integral analytically. I converted to cylindrical coordinates, but did not get anywhere.


Other people's work

This is the same value Johnson & Nævdal obtained in the 1990s:

enter image description here

Thus, the volume is

$$\left(\frac{\pi}{4}\right)^2 2^3 = \frac{\pi^2}{2}$$

However, I do not understand their work. I do not know what Schur parameters are.


Haskell code

Here's the script:

-- discretization step
delta = 2**(-7)


-- discretize the cube [-1,1] x [-1,1] x [-1,1]
grid1D = [-1,-1+delta..1]
grid3D = [ (x,y,z) | x <- grid1D, y <- grid1D, z <- grid1D ]


-- find points inside the 3D elliptope
points = filter (\(x,y,z)->1+2*x*y*z-x**2-y**2-z**2>=0) grid3D


-- find percentage of points inside the elliptope
p = (fromIntegral (length points)) / (1 + (2 / delta))**3

After loading the script:

*Main> delta
7.8125e-3
*Main> p
0.6092187895167795
*Main> p*(2**3)
4.873750316134236

Hence, approximately $61\$ of the grid's points are inside the elliptope, which gives us a volume of approximately $%4.87$.


Python code

A finer discretization:

>>> n = 2**9
>>> delta = 2 / n
>>> counter = 0
>>> for x in [-1+i*delta for i in range(0,n+1)]:
...     for y in [-1+j*delta for j in range(0,n+1)]:
...         for z in [-1+k*delta for k in range(0,n+1)]:
...             if (1 + 2*x*y*z - x**2 - y**2 - z**2 >= 0):
...                 counter = counter + 1
... 
>>> counter
82769977
>>> counter / (n+1)**3
0.6130850685508479
>>> (n+1)**3
135005697
>>> delta
0.00390625
>>> 0.6130850685508479 * 8
4.904680548406783

Again, approximately $61\$ of the grid's points are inside the elliptope, which gives us a volume of approximately $%4.90$, slightly larger than before.


A new Buffon's needle

A symmetric $3 \veces 3$ matrix with

  • $1$'s en la diagonal principal

  • las realizaciones de la variable aleatoria cuya PDF es uniforme en el $[-1,1]$ en las entradas fuera de la diagonal principal

es positivo semidefinite (y, por lo tanto, una matriz de correlación) con una probabilidad de $\left(\frac{\pi}{4}\right)^2$. La estimación de la probabilidad, estimamos $\pi$. Mediante el grueso de la estimación dada por la Haskell secuencia de comandos:

λ 4 * sqrt 0.6092187895167795
3.122098754406797

El uso de la más fina estimación producida por el código de Python:

λ 4 * sqrt 0.6130850685508479
3.131989957968187

Referencias

21voto

DavidP Puntos 5634

La integral puede ser separado:

$$I = 2\int_{-1}^1 \sqrt{1-x^2} dx \cdot \int_{-1}^1 \sqrt{1-y^2} dy = 2\left(\int_{-1}^1 \sqrt{1-t^2} dt\right)^2$$

Esta integral es sencillo la la la sustitución de $t=\sin\theta$:

$$\int_{-1}^1 \sqrt{1-t^2} dt = \int_{-\pi/2}^{\pi/2} \sqrt{1-\sin^2\theta} \cos\theta d\theta = \int_{-\pi/2}^{\pi/2} |\cos\theta|\cos\theta d\theta $$

$$=\int_{-\pi/2}^{\pi/2} \cos^2\theta d\theta = \dfrac{1}{2}\int_{-\pi/2}^{\pi/2} (1+\cos2\theta) d\theta = \dfrac{1}{2}\left(\theta + \dfrac{1}{2}\sin 2\theta\right)\Big|_{-\pi/2}^{\pi/2} = \dfrac{\pi}{2}$$

Por lo tanto

$$I = 2\left(\int_{-1}^1 \sqrt{1-t^2} dt\right)^2 = 2\left(\dfrac{\pi}{2}\right)^2 = \dfrac{\pi^2}{2}$$

13voto

Yves Daoust Puntos 30126

A continuación, integrando factores como $\sqrt{(1-x^2)(1-y^2)}=\sqrt{(1-x^2)}\sqrt{(1-y^2)}$ y cada factor puede ser integrada por separado. Pero reconocer la integral para el área de un semicírculo de radio $1$, por lo tanto

$$I=2\left(\frac\pi2\right)^2.$$

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X