11 votos

Expresan Zeta función usando Gamma de la serie

Motivados por Gautschi doble desigualdad, $$ \frac{n^{s}}{n^{\small1}}\ge\frac{\Gamma(n+s)}{\Gamma(n+1)}\ge\frac{(n+1)^{s}}{(n+1)^{\small1}}\ge\frac{\Gamma(n+1+s)}{\Gamma(n+1+1)}\ge\,\cdots \quad\colon\,0\lt{s}\lt1\tag{1} $$ A partir de la principal definición de la función zeta, $$ \zeta(s)=\sum_{n=1}^{\infty}\frac{1}{n^s}\,\,\,\colon\,Re\{s\}\gt1 \space\Rightarrow\space \zeta(1-s)=\sum_{n=1}^{\infty}\frac{n^{s}}{n^{\small1}} \qquad\colon\,Re\{s\}\lt0\tag{2} $$ Y la suma de la identidad de la función gamma, $$ \sum_{n=0}^{\infty}\frac{\Gamma(n+s)}{n!}=0 \quad\Rightarrow\quad \Gamma(s)=-\sum_{n=1}^{\infty}\frac{\Gamma(n+s)}{\Gamma(n+1)} \qquad\colon\,Re\{s\}\lt0\tag{3} $$

Cómo Demostrar, Refutar, o Justificar: $$ \zeta(1-s)+\Gamma(s)=\sum_{n=1}^{\infty}\left[\,\frac{n^{s}}{n^{\small1}}-\frac{\Gamma(n+s)}{\Gamma(n+1)}\,\right] \qquad\qquad\colon\,0\lt{s}\lt1\tag{4} $$ Es si se extiende a complejo plan de $\,s\in\mathbb C\,$ dentro de la crítica de la tira de $\small 0\lt Re\{s\}\lt1\,$ ?

"Por la monótona decreciente comportamiento de la desigualdad, el resultado de restar de los dos divergentes de la serie converge un paso hacia adelante, cubriendo la crítica de la tira!"

4voto

Roger Hoover Puntos 56

Mi primer pensamiento es para dar una representación integral para el término general de la serie, $$\frac{1}{n^{1-s}}-\frac{B(n+s,1-s)}{\Gamma(1-s)}=\frac{1}{\Gamma(1-s)}\left(\int_{0}^{+\infty}x^{-s}e^{-n x}\,dx-\int_{0}^{1}x^{-s}(1-x)^{n+s-1}\,dx\right)$$

$$\frac{1}{n^{1-s}}-\frac{B(n+s,1-s)}{\Gamma(1-s)}=\frac{1}{\Gamma(1-s)}\left(\int_{0}^{+\infty}x^{-s}e^{-n x}\,dx-\int_{0}^{+\infty}(1-e^{-x})^{-s}e^{-(n+s)x}\,dx\right)$$ Suma más de $n\geq 1$ obtenemos:

$$\sum_{n\geq 1}\left(\frac{n^s}{n^1}-\frac{\Gamma(n+s)}{\Gamma(n+1)}\right)=\frac{1}{\Gamma(1-s)}\int_{0}^{+\infty}\left(\frac{1}{x^s}-\frac{1}{(e^x-1)^s}\right)\frac{dx}{e^x-1}$$ para cada $s$ con parte real $\in(0,1)$. El cálculo explícito de la última integral como $\,\frac{\pi}{\sin(\pi s)}+\Gamma(1-s)\,\zeta(1-s)\,$ demuestra OP identidad del $(4)$. Para el cálculo podemos utilizar, por ejemplo, la clásica aplicación de Ramanujan maestro del teorema de Bernoulli polinomios.

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X