Hay muchas maneras diferentes de ver grados de libertad. Quería ofrecer una rigurosa respuesta que se inicia a partir de una definición concreta de los grados de libertad de un estimador estadístico, ya que esto puede ser útil o satisfactoria para algunos lectores:
Definición: Dado un modelo de observación de la forma $$y_i=r(x_i)+\xi_i,\ \ \ i=1,\dots,n$$ where $\xi_i=\mathcal{N}(0,\sigma^2)$ are i.i.d. noise terms and the $x_i$ are fixed. The degrees of freedom (DOF) of the estimator $\hat{y}$ is defined as $$\text{df}(\hat{y})=\frac{1}{\sigma^2}\sum_{i=1}^n\text{Cov}(\hat{y}_i,y_i)=\frac{1}{\sigma^2}\text{Tr}(\text{Cov}(\hat{y},y)),$$ or equivalently by Stein's lemma $$\text{df}(\hat{y})=\mathbb{E}(\text{div} \hat{y}).$$
Usando esta definición, vamos a analizar la regresión lineal.
Regresión lineal: Considere el modelo $$y_i=x_i\beta +\xi_i,$$ with $x_i\in\mathbb{R}^p$ are independent row vectors. In your case, $p=2$, and the $x_i={z_i,1}$ correspond to a point and the constant $1$, and $\beta=\left[\begin{array}{c}
m\\
b
\end{array}\right]$, that is a slope and constant term so that $x_i \beta=m z_i+b$. Then this can be rewritten as $$y=X\beta+\xi$$ where $X$ is an $n\times p$ matrix whose $i^{th}$ row is $x_i$. The least squares estimator is $\hat{\beta}^{LS}=(X^T X)^{-1}X^Ty$. Let's now based on the above definition calculate the degrees of freedom of $SST$, $SSR$, and $ESS$.
$SST:$ Para esto, necesitamos calcular el $$\text{df}(y_i-\overline{y})=\frac{1}{\sigma^2}\sum_{i=1}^n\text{Cov}(y_i-\overline{y},y_i)=n-\frac{1}{\sigma^2}\sum_{i=1}^n\text{Cov}(\overline{y},y_i)=n-\frac{1}{\sigma^2}\sum_{i=1}^n \frac{\sigma^2}{n}=n-1.$$
$SSR:$ Para esto, tenemos que calcular $$\text{df}(X\hat{\beta}^{LS}-\overline{y})=\frac{1}{\sigma^2}\text{Tr}\left(\text{Cov}(X(X^TX)^{-1}X^y,y\right)-\text{df}(\overline{y})$$ $$=-1+\text{Tr}(X(X^TX)^{-1}X\text{Cov(y,y)})$$ $$=-1+\text{Tr}(X(X^TX)^{-1}X^T)$$ $$=p-1.$$ In your case $p=2$ since you will want $X$ to include the all ones vector so that there is an intercept term, and so the degrees of freedom will be $1$. Sin embargo, tenga en cuenta que este será igual al número de parámetros cuando estamos haciendo la regresión con varios parámetros.
$SST:$ Esto se deduce por la linealidad de la $df$.