Me encontré con un ejercicio en un libro de texto que dice Mostrar $$ \int_{-1}^{1} \frac{(1+x)^{2m-1}(1-x)^{2n-1}}{(1+x^{2})^{m+n}} \ dx = 2^{m+n-2} B(m,n) \ , \ m,n >0$$ and then deduce that for $\alpha$ not an integer multiple of $\pi$ $$ \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \Big( \frac{\cos x + \sin x}{\cos x - \sin x} \Big)^{\cos \alpha} \ dx = \frac{\pi}{2 \sin \left( \pi \cos^{2} \frac{\alpha}{2}\right)}.$$
He conseguido averiguar la segunda parte pero no la primera parte.
$$ \begin{align} \int_{-1}^{1} \frac{(1+x)^{2m-1}(1-x)^{2n-1}}{(1+x^{2})^{m+n}} \ dx &= \int_{\frac{-\pi}{4}}^{\frac{\pi}{4}} \frac{(1 + \tan u)^{2m-1}(1-\tan u)^{2n-1}}{\sec^{2(m+n)} (u)} \ \sec^{2} (u) \ du \\ &= \int_{\frac{-\pi}{4}}^{\frac{\pi}{4}} (\cos u + \sin u)^{2m-1}(\cos u - \sin u)^{2n-1} \ du \end{align}$$
Si entonces dejamos $\displaystyle m = \frac{1 + \cos \alpha}{2}$ y $\displaystyle n= \frac{1- \cos \alpha}{2}$,
$$ \begin{align} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \Big( \frac{\cos x + \sin x}{\cos x - \sin x} \Big)^{\cos \alpha} \ dx &= 2^{-1} \frac{\Gamma \left(\frac{1 + \cos a}{2} \right) \Gamma \left(\frac{1 - \cos a}{2} \right)}{\Gamma (1)} \\ &= 2^{-1} \Gamma \left(\frac{1 + \cos a}{2} \right) \Gamma \left( 1- \frac{ 1 + \cos a }{2} \right) \\ &= 2^{-1} \frac{\pi}{\sin \left( \pi \frac{1+\cos a}{2} \right)} \\ &= \frac{\pi}{2 \sin \left( \pi \cos^{2} \frac{a}{2}\right)} . \end{align}$$