$$\int \frac{1}{x^{10} + x}dx$$
Mi solución :
$$\begin{align*} \int\frac{1}{x^{10}+x}\,dx y=\int\left(\frac{x^9+1}{x^{10}+x}-\frac{x^9}{x^{10}+x}\right)\,dx\\ &=\int\left(\frac{1}{x}-\frac{x^8}{x^9+1}\right)\,dx\\ &=\ln|x|-\frac{1}{9}\ln|x^9+1|+C \end{align*}$$
Es allí una manera totalmente distinta a resolverlo ?