8 votos

Calcular

Calcular

$$\lim_{n\to \infty} \frac{\displaystyle \frac{2}{1}+\frac{3^2}{2}+\frac{4^3}{3^2}+...+\frac{(n+1)^n}{n^{n-1}}}{n^2}$$

He metí con esta tarea durante bastante tiempo ahora, pero yo no he tenido éxito para encontrar la solución sin embargo.

¡Se agradece la ayuda!

11voto

Roger Hoover Puntos 56

Queremos calcular: %#% $ de #% está convergiendo en la secuencia indicada en $$ \color{red}{L}=\lim_{n\to +\infty}\frac{1}{n^2}\sum_{k=1}^{n}k\cdot\left(1+\frac{1}{k}\right)^k.$ $a_k=\left(1+\frac{1}{k}\right)^k $, por lo tanto convergente $e$ $ $$ b_k = \frac{k a_k + (k-1) a_{k-1} + \ldots + 2 a_2 + a_1}{k+(k-1)+\ldots+2+1} $, también de Cesàro. Desde $e$, se deduce que: $k+(k-1)+\ldots+1 = \frac{k(k+1)}{2}$ $

1voto

Vincenzo Oliva Puntos 3277

La combinación de $$\frac{1}{1-1/n}>1+\frac1n \ \ \ n>1 $$ with the fact that for all positive $n$ we have $$ \left(1+\frac1n\right)^n<e<\left(1+\frac{1}{n}\right)^{n+1}, $$ and after rewriting your sequence $a_n$ as $\frac{1}{n^2}\sum_{k=1}^n k (1 + 1/k) ^k$, we find the general term $s_k$ of the sum satisfies $$k\left(e-\frac ek\right)<s_k<ke$$. Thus $$\frac{e}{2} \leftarrow \frac{e}{2}\frac{n(n+1)}{n^2} - \frac{e}{n} =\frac{e}{n^2} \sum_{k=1}^n(k-1)<a_n< \frac{e}{n^2} \sum_{k=1}^n k=\frac e2 \frac{n(n+1)}{n^2} \to \frac e2,$$ and by the squeeze theorem we conclude $\lim\limits_ {n\to\infty} a_n = \displaystyle\frac e2$.

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X