La combinación de $$\frac{1}{1-1/n}>1+\frac1n \ \ \ n>1 $$ with the fact that for all positive $n$ we have $$ \left(1+\frac1n\right)^n<e<\left(1+\frac{1}{n}\right)^{n+1}, $$ and after rewriting your sequence $a_n$ as $\frac{1}{n^2}\sum_{k=1}^n k (1 + 1/k) ^k$, we find the general term $s_k$ of the sum satisfies $$k\left(e-\frac ek\right)<s_k<ke$$. Thus $$\frac{e}{2} \leftarrow \frac{e}{2}\frac{n(n+1)}{n^2} - \frac{e}{n} =\frac{e}{n^2} \sum_{k=1}^n(k-1)<a_n< \frac{e}{n^2} \sum_{k=1}^n k=\frac e2 \frac{n(n+1)}{n^2} \to \frac e2,$$ and by the squeeze theorem we conclude $\lim\limits_ {n\to\infty} a_n = \displaystyle\frac e2$.