Aquí está mi evaluación del caso cuadrático. El punto de partida para la derivación es la identidad algebraica
$$6ab^2=\left(a+b\right)^3+\left(a-b\right)^3-2a^3.$$
A continuación,
$$\begin{align}
\mathcal{I}_{2}
&=\int_{0}^{1}\frac{\ln{\left(\frac{1}{t}\right)}\ln^{2}{\left(t+2\right)}}{t+1}\,\mathrm{d}t\\
&=\small{\int_{0}^{1}\frac{\frac16\left(\ln{\left(\frac{1}{t}\right)}+\ln{\left(t+2\right)}\right)^3+\frac16\left(\ln{\left(\frac{1}{t}\right)}-\ln{\left(t+2\right)}\right)^3-\frac13\ln^{3}{\left(\frac{1}{t}\right)}}{t+1}\,\mathrm{d}t}\\
&=\int_{0}^{1}\frac{\frac16\ln^{3}{\left(\frac{t+2}{t}\right)}+\frac16-\ln^{3}{\left(t(t+2)\right)}+\frac13\ln^{3}{\left(t\right)}}{t+1}\,\mathrm{d}t\\
&=\frac16\int_{0}^{1}\frac{\ln^{3}{\left(\frac{t+2}{t}\right)}}{t+1}\,\mathrm{d}t-\frac16\int_{0}^{1}\frac{\ln^{3}{\left(t(t+2)\right)}}{t+1}\,\mathrm{d}t\\
&~~~~~+\frac13\int_{0}^{1}\frac{\ln^{3}{\left(t\right)}}{t+1}\,\mathrm{d}t\\
&=\frac16\int_{0}^{1}\frac{\ln^{3}{\left(\frac{t+2}{t}\right)}}{t+1}\,\mathrm{d}t-\frac16\int_{0}^{1}\frac{\ln^{3}{\left((t+1)^2-1\right)}}{t+1}\,\mathrm{d}t\\
&~~~~~+\frac13\int_{0}^{1}\frac{\ln^{3}{\left(t\right)}}{t+1}\,\mathrm{d}t\\
&=\frac16\int_{0}^{1}\frac{\ln^{3}{\left(\frac{t+2}{t}\right)}}{t+1}\,\mathrm{d}t-\frac16\int_{0}^{1}\frac{\ln^{3}{\left((t+1)^2-1\right)}}{t+1}\,\mathrm{d}t\\
&~~~~~+\frac13\int_{0}^{1}\frac{\ln^{3}{\left(t\right)}}{t+1}\,\mathrm{d}t\\
&=\frac16\int_{\frac12}^{1}\frac{\ln^{3}{\left(\frac{1+y}{1-y}\right)}}{y}\,\mathrm{d}y-\frac16\int_{\frac12}^{1}\frac{\ln^{3}{\left(\frac{1}{y^2}-1\right)}}{y}\,\mathrm{d}y\\
&~~~~~+\frac13\int_{0}^{1}\frac{\ln^{3}{\left(t\right)}}{t+1}\,\mathrm{d}t;~~~\small{\left[\frac{1}{1+t}=y\right]}\\
&=-\frac16\int_{\frac12}^{1}\frac{\ln^{3}{\left(\frac{1-y}{1+y}\right)}}{y}\,\mathrm{d}y-\frac{1}{12}\int_{0}^{3}\frac{\ln^{3}{\left(x\right)}}{1+x}\,\mathrm{d}x\\
&~~~~~+\frac13\int_{0}^{1}\frac{\ln^{3}{\left(t\right)}}{t+1}\,\mathrm{d}t;~~~\small{\left[y=\frac{1}{\sqrt{1+x}}\right]}\\
&=-\frac13\int_{0}^{\frac13}\frac{\ln^{3}{\left(x\right)}}{1-x^2}\,\mathrm{d}x-\frac{1}{12}\int_{0}^{3}\frac{\ln^{3}{\left(x\right)}}{1+x}\,\mathrm{d}x\\
&~~~~~+\frac13\int_{0}^{1}\frac{\ln^{3}{\left(t\right)}}{t+1}\,\mathrm{d}t;~~~\small{\left[\frac{1-y}{1+y}=x\right]}\\
&=-\frac16\int_{0}^{\frac13}\frac{\ln^{3}{\left(x\right)}}{1-x}\,\mathrm{d}x-\frac16\int_{0}^{\frac13}\frac{\ln^{3}{\left(x\right)}}{1+x}\,\mathrm{d}x\\
&~~~~~\small{-\frac{1}{12}\int_{0}^{1}\frac{\ln^{3}{\left(x\right)}}{1+x}\,\mathrm{d}x-\frac{1}{12}\int_{1}^{3}\frac{\ln^{3}{\left(x\right)}}{1+x}\,\mathrm{d}x+\frac13\int_{0}^{1}\frac{\ln^{3}{\left(t\right)}}{t+1}\,\mathrm{d}t}\\
&=-\frac16\int_{0}^{\frac13}\frac{\ln^{3}{\left(x\right)}}{1-x}\,\mathrm{d}x-\frac16\int_{0}^{\frac13}\frac{\ln^{3}{\left(x\right)}}{1+x}\,\mathrm{d}x\\
&~~~~~-\frac{1}{12}\int_{1}^{3}\frac{\ln^{3}{\left(x\right)}}{1+x}\,\mathrm{d}x+\frac14\int_{0}^{1}\frac{\ln^{3}{\left(t\right)}}{t+1}\,\mathrm{d}t\\
&=-\frac16\int_{0}^{\frac13}\frac{\ln^{3}{\left(x\right)}}{1-x}\,\mathrm{d}x-\frac16\int_{0}^{\frac13}\frac{\ln^{3}{\left(x\right)}}{1+x}\,\mathrm{d}x\\
&~~~~~+\frac{1}{12}\int_{\frac13}^{1}\frac{\ln^{3}{\left(w\right)}}{w\left(1+w\right)}\,\mathrm{d}w+\frac14\int_{0}^{1}\frac{\ln^{3}{\left(t\right)}}{t+1}\,\mathrm{d}t;~~~\small{\left[\frac{1}{x}=w\right]}\\
&=\small{-\frac16\int_{0}^{\frac13}\frac{\ln^{3}{\left(x\right)}}{1-x}\,\mathrm{d}x-\frac{1}{12}\int_{0}^{\frac13}\frac{\ln^{3}{\left(x\right)}}{1+x}\,\mathrm{d}x-\frac{1}{12}\int_{0}^{\frac13}\frac{\ln^{3}{\left(x\right)}}{1+x}\,\mathrm{d}x}\\
&~~~~~\small{+\frac{1}{12}\int_{\frac13}^{1}\frac{\ln^{3}{\left(w\right)}}{w}\,\mathrm{d}w-\frac{1}{12}\int_{\frac13}^{1}\frac{\ln^{3}{\left(w\right)}}{1+w}\,\mathrm{d}w+\frac14\int_{0}^{1}\frac{\ln^{3}{\left(t\right)}}{t+1}\,\mathrm{d}t}\\
&=-\frac16\int_{0}^{\frac13}\frac{\ln^{3}{\left(x\right)}}{1-x}\,\mathrm{d}x-\frac{1}{12}\int_{0}^{\frac13}\frac{\ln^{3}{\left(x\right)}}{1+x}\,\mathrm{d}x\\
&~~~~~-\frac{1}{48}\ln^{4}{(3)}+\frac16\int_{0}^{1}\frac{\ln^{3}{\left(t\right)}}{t+1}\,\mathrm{d}t\\
&=-\frac{1}{18}\int_{0}^{1}\frac{\ln^{3}{\left(\frac{w}{3}\right)}}{1-\frac13w}\,\mathrm{d}w-\frac{1}{36}\int_{0}^{1}\frac{\ln^{3}{\left(\frac{w}{3}\right)}}{1+\frac13w}\,\mathrm{d}w\\
&~~~~~-\frac{1}{48}\ln^{4}{(3)}+\frac16\int_{0}^{1}\frac{\ln^{3}{\left(t\right)}}{t+1}\,\mathrm{d}t;~~~\small{\left[3x=w\right]}\\
&=\small{-\frac{1}{18}\int_{0}^{1}\frac{\ln^{3}{\left(w\right)}}{1-\frac13w}\,\mathrm{d}w+\frac{\ln{(3)}}{6}\int_{0}^{1}\frac{\ln^{2}{\left(w\right)}}{1-\frac13w}\,\mathrm{d}w-\frac{\ln^{2}{(3)}}{6}\int_{0}^{1}\frac{\ln{\left(w\right)}}{1-\frac13w}\,\mathrm{d}w}\\
&~~~~~\small{+\frac{\ln^{3}{(3)}}{18}\int_{0}^{1}\frac{\mathrm{d}w}{1-\frac13w}-\frac{1}{36}\int_{0}^{1}\frac{\ln^{3}{\left(w\right)}}{1+\frac13w}\,\mathrm{d}w+\frac{\ln{(3)}}{12}\int_{0}^{1}\frac{\ln^{2}{\left(w\right)}}{1+\frac13w}\,\mathrm{d}w}\\
&~~~~~\small{-\frac{\ln^{2}{(3)}}{12}\int_{0}^{1}\frac{\ln{\left(w\right)}}{1+\frac13w}\,\mathrm{d}w+\frac{\ln^{3}{(3)}}{36}\int_{0}^{1}\frac{\mathrm{d}w}{1+\frac13w}-\frac{1}{48}\ln^{4}{(3)}+\frac16\int_{0}^{1}\frac{\ln^{3}{\left(t\right)}}{t+1}\,\mathrm{d}t}.\\
\end {Alinee el} $$
Usando la representación integral de polylogarithmic,
$$\int_{0}^{1}\frac{\ln^{n}{\left(y\right)}}{1-zy}\,\mathrm{d}y=\frac{(-1)^{n}n!}{z}\,\operatorname{Li}_{n+1}{\left(z\right)};~~~\small{n\in\mathbb{Z}^{+}\land1\ge z\neq0}$$
Tenemos
$$\begin{align}
\mathcal{I}_{2}
&=\small{\operatorname{Li}_{4}{\left(\frac13\right)}-\frac12\,\operatorname{Li}_{4}{\left(-\frac13\right)}+\ln{(3)}\,\operatorname{Li}_{3}{\left(\frac13\right)}-\frac{\ln{(3)}}{2}\,\operatorname{Li}_{3}{\left(-\frac13\right)}}\\
&~~~~~\small{+\frac{\ln^{2}{(3)}}{2}\,\operatorname{Li}_{2}{\left(\frac13\right)}-\frac{\ln^{2}{(3)}}{4}\,\operatorname{Li}_{2}{\left(-\frac13\right)}+\frac{\ln^{4}{(3)}}{16}+\operatorname{Li}_{4}{\left(-1\right)}}\\
&=\small{\operatorname{Li}_{4}{\left(\frac13\right)}-\frac12\,\operatorname{Li}_{4}{\left(-\frac13\right)}+\ln{(3)}\left[\operatorname{Li}_{3}{\left(\frac13\right)}-\frac12\,\operatorname{Li}_{3}{\left(-\frac13\right)}\right]}\\
&~~~~~\small{+\frac{\ln^{2}{(3)}}{2}\left[\operatorname{Li}_{2}{\left(\frac13\right)}-\frac12\,\operatorname{Li}_{2}{\left(-\frac13\right)}\right]+\frac{\ln^{4}{(3)}}{16}-\frac78\,\operatorname{Li}_{4}{\left(1\right)}}\\
&=\operatorname{Li}_{4}{\left(\frac13\right)}-\frac12\,\operatorname{Li}_{4}{\left(-\frac13\right)}\\
&~~~~~+\ln{(3)}\left[\frac{13}{12}\,\zeta{(3)}-\frac12\zeta{(2)}\ln{(3)}+\frac{1}{12}\ln^3{(3)}\right]\\
&~~~~~+\frac{\ln^{2}{(3)}}{2}\left[\frac12\,\zeta{(2)}-\frac14\ln^2{(3)}\right]+\frac{\ln^{4}{(3)}}{16}-\frac78\,\zeta{(4)}\\
&=\operatorname{Li}_{4}{\left(\frac13\right)}-\frac12\,\operatorname{Li}_{4}{\left(-\frac13\right)}+\frac{13}{12}\ln{(3)}\zeta{(3)}\\
&~~~~~-\frac14\ln^{2}{(3)}\zeta{(2)}+\frac{1}{48}\ln^{4}{(3)}-\frac78\,\zeta{(4)}.\\
\end {Alinee el} $$