He evaluado con éxito la integral en forma @Sangchul Lee:
$$ I = 8 \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2n+1} \int_{0}^{\infty} \frac{e^{-x}(1 - e^{-(2n+1)x})}{x (1 + e^{-x})^{2}} \, dx. $$
Empieza con la integral generalizada: $$\begin{align} &\int_{0}^{\infty}\frac{e^{-t\left(m_{1}+1\right)}-e^{-t\left(m_{2}+1\right)}}{t\left(e^{-t}+1\right)^{2}}dt \\ \\ =\space&\int_{m_{2}}^{m_{1}}\left(-\frac{1}{2}+tL\left(-1,1,t+1\right)\right)dt \\ \\ =\space&\frac{m_{2}-m_{1}}{2}+\int_{m_{2}}^{m_{1}}tL\left(-1,1,t+1\right)dt \\ \\ =\space&\frac{m_{2}-m_{1}}{2}+\int_{m_{2}}^{m_{1}}t\int_{0}^{\infty}\frac{e^{-u\left(t+1\right)}}{e^{-u}+1}\space du\space dt \\ \\ =\space&\frac{m_{2}-m_{1}}{2}+\int_{0}^{\infty}\frac{e^{-u\left(m_{2}+1\right)}\left(m_{2}u+1\right)-e^{-u\left(m_{1}+1\right)}\left(m_{1}u+1\right)}{u^{2}\left(e^{-u}+1\right)}du \\ \\ =\space&\frac{m_{2}-m_{1}}{2}+m_{2}\int_{0}^{\infty}\frac{e^{-u\left(m_{2}+1\right)}}{u\left(e^{-u}+1\right)}du-m_{1}\int_{0}^{\infty}\frac{e^{-u\left(m_{1}+1\right)}}{u\left(e^{-u}+1\right)}du \\ &\qquad\qquad\qquad+\int_{0}^{\infty}\frac{e^{-u\left(m_{2}+1\right)}}{u^{2}\left(e^{-u}+1\right)}du-\int_{0}^{\infty}\frac{e^{-u\left(m_{1}+1\right)}}{u^{2}\left(e^{-u}+1\right)}du \end{align}$$
Por encima de $L(z,s,a)$ es el Lerch Trascendente .
He encontrado (sin una prueba completa todavía) que
$$\begin{align} &2\int_{x}^{\infty}\frac{e^{-at}}{t^{s}\left(e^{-t}+1\right)}dt \\ &=\left(-1\right)^{s}\frac{\gamma+\ln2}{\left(s-1\right)!}E\left(s-1,a\right)+\left(-1\right)^{s}2^{s}\sum_{n=0}^{s-2}\frac{{\psi^*}^{(n-s)}\left(0\right)}{2^{n+1}n!}E\left(n,a\right)+\left(-1\right)^{s}2^{s}\left({\psi^*}^{(-s)}\left(\frac{a+1}{2}\right)-{\psi^*}^{(-s)}\left(\frac{a}{2}\right)\right) \\&-\sum_{n=0}^{s-2}\left(-1\right)^{n}E\left(n,a\right)\frac{x^{n-s+1}}{n!\left(n-s+1\right)}+\left(-1\right)^{s}E\left(s-1,a\right)\frac{1}{\left(s-1\right)!}\ln x-\sum_{n=s}^{\infty}\left(-1\right)^{n}E\left(n,a\right)\frac{x^{n-s+1}}{n!\left(n-s+1\right)} \end{align}$$
para $|x|\le \pi$ y
$${\psi^*}^{(-n)}(x)=\frac{1}{\left(n-2\right)!}\int_{1}^{x}\left(x-t\right)^{n-2}\ln\left(\Gamma(t)\right)dt$$
Obsérvese que ésta sería una definición válida para la función Polygamma de orden negativo, salvo que el límite comienza en $1$ en lugar de $0$ .
Para $s=1$ tenemos
$$\begin{align} \int_{x}^{\infty}\frac{e^{-at}}{t\left(e^{-t}+1\right)}dt=-\frac{1}{2}\left(\gamma+\ln2\right)-\left(\psi^{(-1)}\left(\frac{a+1}{2}\right)-\psi^{(-1)}\left(\frac{a}{2}\right)\right) \\-\frac{1}{2}\ln x-\frac{1}{2}\sum_{n=1}^{\infty}\left(-1\right)^{n}E\left(n,a\right)\frac{x^{n}}{n!n} \end{align}$$
et $s=2$ ,
$$\begin{align} \int_{x}^{\infty}\frac{e^{-at}}{t^2\left(e^{-t}+1\right)}dt=\left(\frac{a}{2}-\frac{1}{4}\right)\left(\gamma+\ln2\right)-\frac{\ln2\pi}{2}+2\left({\psi}^{(-2)}\left(\frac{a+1}{2}\right)-{\psi}^{(-2)}\left(\frac{a}{2}\right)\right) \\+\frac{1}{2x}+\left(\frac{a}{2}-\frac{1}{4}\right)\ln x-\frac{1}{2}\sum_{n=2}^{\infty}\left(-1\right)^{n}E\left(n,a\right)\frac{x^{\left(n-1\right)}}{n!\left(n-1\right)} \end{align}$$
Obsérvese que en estos casos podemos utilizar las funciones Polygamma normales, ya que ${\psi^*}^{(-1)}\left(x\right)={\psi}^{(-1)}\left(x\right)$ y ${\psi^*}^{(-2)}\left(x\right)={\psi}^{(-2)}\left(x\right)+\text{constant}$
Por lo tanto
$$\begin{align} &\int_{0}^{\infty}\frac{e^{-t\left(m_{1}+1\right)}-e^{-t\left(m_{2}+1\right)}}{t\left(e^{-t}+1\right)^{2}}dt \\ &=\frac{m_{2}-m_{1}}{2}+m_{1}\ln\left(\frac{\Gamma\left(\frac{m_{1}+2}{2}\right)}{\Gamma\left(\frac{m_{1}+1}{2}\right)}\right)-m_{2}\ln\left(\frac{\Gamma\left(\frac{m_{2}+2}{2}\right)}{\Gamma\left(\frac{m_{2}+1}{2}\right)}\right)-2\left(\psi^{(-2)}\left(\frac{m_{1}+2}{2}\right)-\psi^{(-2)}\left(\frac{m_{1}+1}{2}\right)\right)+2\left(\psi^{(-2)}\left(\frac{m_{2}+2}{2}\right)-\psi^{(-2)}\left(\frac{m_{2}+1}{2}\right)\right) \end{align}$$
Configuración $m_1=0$ y $m_2=2n+1$ nos da
$$\begin{align} &\int_{0}^{\infty}\frac{e^{-t}\left(1-e^{-t\left(2n+1\right)}\right)}{t\left(e^{-t}+1\right)^{2}}dt \\ &=3\ln A-\frac{7}{12}\ln2-\frac{1}{2}\ln\pi+\frac{2n+1}{2}-\left(2n+1\right)\ln\left(\frac{\Gamma\left(\frac{2n+3}{2}\right)}{\Gamma\left(\frac{2n+2}{2}\right)}\right)+2\left(\psi^{(-2)}\left(\frac{2n+3}{2}\right)-\psi^{(-2)}\left(\frac{2n+2}{2}\right)\right) \\ &=6\ln A-\frac{1}{6}\ln2+\frac{2n+1}{2}-\left(2n+1\right)\ln\left(\frac{\Gamma\left(\frac{2n+3}{2}\right)}{\Gamma\left(\frac{2n+2}{2}\right)}\right)-\left(n+1\right)\ln2-\left(n+1\right)-\sum_{k=1}^{2n+1}\left(-1\right)^{k}k\ln k \end{align}$$
Teniendo en cuenta que $\frac{\Gamma\left(\frac{2n+3}{2}\right)}{\Gamma\left(\frac{2n+2}{2}\right)}=\sqrt{\pi}\frac{2n+1}{2^{\left(2n+1\right)}}\binom{2n}{n}$
$$I=\pi\left(12\ln A-\frac{4}{3}\ln2-1\right)-4\ln\left(\frac{\pi}{2}\right)-8\sum_{n=1}^{\infty}\left(\frac{\ln4n}{4n-1}-\frac{2}{\left(4n-1\right)\left(4n+1\right)}\sum_{k=1}^{4n}\left(-1\right)^{k}k\ln k\right)$$
Sin tener en cuenta $\frac{\Gamma\left(\frac{2n+3}{2}\right)}{\Gamma\left(\frac{2n+2}{2}\right)}=\sqrt{\pi}\frac{2n+1}{2^{\left(2n+1\right)}}\binom{2n}{n}$ obtenemos
$$I=\pi\left(12\ln A-\frac{4}{3}\ln2-1\right)+8\sum_{n=1}^{\infty}\left(\frac{\ln\left(4n-2\right)}{4n-3}-\frac{2}{\left(4n-3\right)\left(4n-1\right)}\sum_{k=1}^{4n-2}\left(-1\right)^k k\ln k\right)$$
Por lo tanto
$$I=\pi\left(12\ln A-\frac{4}{3}\ln2-1\right)-2\ln\left(\frac{\pi}{2}\right)-4\sum_{n=1}^{\infty}\left(-1\right)^{n}\left(\frac{\ln2n}{2n-1}-\frac{2}{\left(2n-1\right)\left(2n+1\right)}\sum_{k=1}^{2n}\left(-1\right)^{k}k\ln k\right)$$
Que pude reducir a
$$ \begin{align} I&=\pi\left(12\ln A-\frac{4}{3}\ln2-1\right)+4\ln\left(\frac{\Gamma\left(\frac{3}{4}\right)}{\Gamma\left(\frac{1}{4}\right)}\right)+\lim\limits_{m\to\infty}\left(-2\ln 2m+8\sum_{n=1}^{2m}\frac{\left(-1\right)^{n}}{2n-1}\sum_{k=1}^{2n-2}\left(-1\right)^{k}k\ln k\right)\\ &=\pi\left(12\ln A-\frac{4}{3}\ln2-1\right)+4\ln\left(\frac{\Gamma\left(\frac{3}{4}\right)}{\Gamma\left(\frac{1}{4}\right)}\right)+4\ln2+\lim\limits_{m\to\infty}\left(2\ln2m-8\sum_{n=1}^{2m}\frac{\left(-1\right)^{n}}{2n+1}\sum_{k=1}^{2n}\left(-1\right)^{k}k\ln k\right) \end{align} $$
Después de esta entrada podemos obtener una forma integral donde las integrales no contienen logaritmos ni funciones trigonométricas hiperbólicas:
$$ \begin{align} I &= 2\pi\left(3\ln A-\frac{2}{3}\ln2-\frac{1}{2}+\frac{7}{12}\ln2\right)+4\ln\left(\frac{\Gamma\left(\frac{3}{4}\right)}{\Gamma\left(\frac{1}{4}\right)}\right)+\frac{4}{3}\ln2-2\ln\pi+24\ln A \\ &+2\int_{0}^{\infty}\frac{1}{t}\left(1+\left(\frac{\pi}{4}-1\right)e^{-t}-e^{\frac{t}{2}}\arctan\left(e^{-\frac{t}{2}}\right)\right)dt \\ &+8\int_{0}^{\infty}\left(-\frac{1}{12t}+\frac{1}{t^{2}\left(e^{t}-1\right)}+\frac{1}{2t^{2}}-\frac{1}{t^{3}}\right)\left(4e^{\frac{t}{2}}\arctan\left(e^{-\frac{t}{2}}\right)-e^{t}\arctan\left(e^{-t}\right)-3\right)dt \end{align} $$
0 votos
Por cierto, $~\displaystyle\int_0^1\bigg[\text{arctanh }x-\ln\tan\bigg(\frac\pi2~x\bigg)\bigg]~dx ~=~ \ln2.$
0 votos
Pruebe el sustituto $x=1/t$ .
1 votos
Un camino posible: escribir $\arctan\tanh u$ como $\frac{\pi}{4}-\arctan(e^{2u})$ calcula la serie de Taylor de $\arctan(z)$ en torno a $z=1$ y luego las integrales: $$ I_n = \int_{0}^{+\infty}\frac{(1-e^{-2u})^n}{u\cosh^2 u}\,du$$ a través del teorema de Frullani.
0 votos
También, $~\displaystyle{\LARGE\int}_0^1\frac{\text{arctanh }x}{\tan\bigg(\dfrac\pi2~x\bigg)}~dx~$ converge a aproximadamente $0.488385477\ldots$
1 votos
¿Alguien cree que construir algún tipo de contorno funcionaría para la tercera forma de la integral? El hecho de que estemos considerando la recta real en lugar de $(-1,1)$ o $\left(-\frac{\pi}{4},\frac{\pi}{4}\right)$ me da algo de esperanza.
0 votos
Otra forma de la integral es $$8\int_0^1 \frac{\tan ^{-1}\left(\frac{u-1}{u+1}\right)}{(1+u)^2 \log (u)} \, du=$$ $$=8 \int _0^1\int _0^1\frac{(u-1)~dv~du}{(u+1) \left((1+u)^2+(1-u)^2 v^2\right) \log (u)}$$
0 votos
Este huevo todavía me da pesadillas
0 votos
No se conoce ninguna forma cerrada. Otra integral sin forma cerrada conocida es $$\int \frac{1}{\operatorname{arctanh}(x)}\;dx$$