6 votos

integral que involucra función hipergeométrica $\int^1_0\frac{_2F_1(p,p;p+1;-\frac{1}{y})}{y}\,dy$

Llegué a la siguiente resultado

$$\tag{1}\int^\infty_0 z^{p-1} E^2(z)\,dz=\frac{\Gamma(p)}{p}\int^1_0\frac{_2F_1(p,p;p+1;-\frac{1}{z})}{z}\,dz$$

donde la integral exponencial $E(z)$ se define como

$$E(z)=\int^\infty_z \frac{e^{-t}}{t}\,dt$$

Tengo dos preguntas

[1] (1) mantenga pulsado para todos los $p>0$ ?

[2] Es allí una manera de simplificar o resolver la integral de la derecha ?

1voto

Leucippus Puntos 11926

Vamos \begin{align} E_{1}(x) = \int_{x}^{\infty} \frac{e^{-t}}{t} \, dt \end{align} a continuación, los siguientes dos identidades puede ser visto para ser \begin{align} \int_{0}^{\infty} x^{n} E_{1}(ax) E_{1}(bx) \, dx &= - \frac{n!}{n+1} \left[ \frac{1}{a^{n+1}} \left\{ \ln\left(\frac{b}{a+b}\right) + \sum_{m=1}^{n} \frac{1}{m} \left( \frac{a}{a+b} \right)^{m} \right\} \right. \\ & \hspace{20mm} \left. + \frac{1}{b^{n+1}} \left\{ \ln\left(\frac{a}{a+b}\right) + \sum_{m=1}^{n} \frac{1}{m} \left( \frac{b}{a+b} \right)^{m} \right\} \right]. \end{align} Al $a=b=1$ esto se convierte en \begin{align} \int_{0}^{\infty} x^{p} E_{1}^{2}(x) \, dx &= \frac{\Gamma(p+1)}{2^{p} \, (p+1)} \, \sum_{m=0}^{\infty} \frac{1}{2^{m} (m+p+1)} . \end{align}

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X