Esta es una tarea problema de la do Carmo. Dado regular de la parametrización de la superficie de $X(u,v)$ definimos el paralelo de la superficie de $Y(u,v)$ por $$Y(u,v)=X(u,v) + aN(u,v)$$ where $N(u,v)$ is the unit normal on $X$ and $a$ is a constant. I have been asked to compute the Gaussian and mean curvatures $\overline{K}$ and $\overline{H}$ of $Y(u,v)$ in terms of those of X, $K$ and $H$. Now, I know how to do this by brute force: calculate the coefficients of the first and second fundamental forms of $Y$ in terms of those of $X$. However, this is a lengthy and messy calculation. do Carmo says that $$\overline{K}=\frac{K}{1-2Ha+Ka^2}$$ and $$\overline{H}=\frac{H-Ka}{1-2Ha+Ka^2}.$$ The denominator of these fractions is actually something that arose earlier in the problem; I calculated $$Y_u\times Y_v=(1-2Ha+Ka^2)(X_u\times X_v).$$ So, it seems like I should be able to calcuate $\overline{K}$ and $\overline{H}$ a partir de este paso inicial. Hay algo que me falta? O, ¿es en realidad sólo la fuerza bruta de cálculo?
Gracias.