Acabo de empezar a leer Gallian del álgebra Abstracta y en la página 3 dice: "Una propiedad importante de los enteros...es lo que se denomina Principio de orden. Ya que esta propiedad no puede ser probada a partir de las propiedades habituales de la aritmética, lo tomaremos como un axioma". [mi énfasis]
Mi pregunta es, ¿cómo puede uno (en este caso el autor) estar tan seguro de que el Bien Principio de orden no puede ser probada a partir de las propiedades de la aritmética. Es posible demostrar que las declaraciones de este tipo (es decir, el uno en cursiva arriba). Si es así, ¿qué sería de una prueba?