$\newcommand{\+}{^{\daga}}%
\newcommand{\ángulos}[1]{\left\langle #1 \right\rangle}%
\newcommand{\llaves}[1]{\left\lbrace #1 \right\rbrace}%
\newcommand{\bracks}[1]{\left\lbrack #1 \right\rbrack}%
\newcommand{\dd}{{\rm d}}%
\newcommand{\isdiv}{\,\left.\a la derecha\vert\,}%
\newcommand{\ds}[1]{\displaystyle{#1}}%
\newcommand{\equalby}[1]{{#1 \cima {= \cima \vphantom{\enorme}}}}%
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}%
\newcommand{\fermi}{\,{\rm f}}%
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}%
\newcommand{\ic}{{\rm i}}%
\newcommand{\imp}{\Longrightarrow}%
\newcommand{\cy}[1]{\left\vert #1\right\rangle}%
\newcommand{\pars}[1]{\left( #1 \right)}%
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}%
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,#2\,}\,}%
\newcommand{\sech}{\,{\rm sech}}%
\newcommand{\sgn}{\,{\rm sgn}}%
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}%
\newcommand{\verts}[1]{\left\vert #1 \right\vert}%
\newcommand{\yy}{\Longleftrightarrow}$
\begin{align}
&\sum_{n = 1}^{\infty}{n \over n^{4} + n^{2} + 1}
=
\sum_{n = 1}^{\infty}{n \over \pars{n^{2} + 1/2}^{2} + 3/4}
\\[3mm]&=
\sum_{n = 1}^{\infty}{n \over \bracks{n^{2} -\pars{-1/2 - \sqrt{3}\,\ic/2}}
\bracks{n^{2} -\pars{-1/2 + \sqrt{3}\,\ic/2}}}
=
\sum_{n = 1}^{\infty}{n \over \pars{n^{2} - \xi^{2}}\pars{n^{2} - {\xi^{*}}^{2}}}
\end{align}
donde $\xi^{2} \equiv \pars{-1 - \root{3}\,\ic}/2 = \expo{4\pi\ic/3}$
\begin{align}
&\sum_{n = 1}^{N}{n \over n^{4} + n^{2} + 1}
=
{1 \over \xi^{2} - {\xi^{*}}^{2}}\sum_{n = 1}^{N}\pars{%
{n \over n^{2} - \xi^{2}} - {n \over n^{2} - {\xi^{*}}^{2}}}
=
{1 \over 2\ic\Im\pars{\xi^{2}}}\,2\ic\Im\sum_{n = 1}^{N}
{n \over n^{2} - \xi^{2}}
\\[3mm]&=
-\,{2\root{3} \over 3}\Im\bracks{{1 \over 2}\sum_{n = 1}^{N}
\pars{{1 \over n - \xi} + {1 \over n + \xi}}}
=
-\,{\root{3} \over 3}\Im\sum_{n = 1}^{N}
\pars{{1 \over n + \xi} + {1 \over n - \xi}}
\\[3mm]&=
-\,{\root{3} \over 3}\Im\pars{%
\sum_{n = 1}^{N}{1 \over n + \xi} - \sum_{n = 1}^{N}{1 \over n - \xi^{*}}}
\end{align}
\begin{align}
&\xi = \expo{2\pi\ic/3} = \cos\pars{2\pi \over 3} + \sin\pars{2\pi \over 3}\ic
=
-\,{1 \over 2} + {\root{3} \over 2}\,\ic
\\[3mm]&
\mbox{Notice that}\ \xi^{*} = -\,{1 \over 2} - {\root{3} \over 2}\,\ic
= -1 - \pars{-\,{1 \over 2} + {\root{3} \over 2}\,\ic} = - 1 - \xi
\end{align}
\begin{align}
&\sum_{n = 1}^{\infty}{n \over n^{4} + n^{2} + 1}
=
-\,{\root{3} \over 3}\lim_{N \to \infty}\Im\pars{%
\sum_{n = 1}^{N}{1 \over n + \xi} - \sum_{n = 1}^{N}{1 \over n + 1 + \xi}}
\\[3mm]&=
-\,{\root{3} \over 3}\lim_{N \to \infty}\Im\pars{%
\sum_{n = 1}^{N}{1 \over n + \xi} - \sum_{n = 2}^{N + 1}{1 \over n + \xi}}
\\[3mm]&=
-\,{\root{3} \over 3}\lim_{N \to \infty}\Im\pars{%
{1 \over 1 + \xi } + \sum_{n = 2}^{N}{1 \over n + \xi}
-
\sum_{n = 2}^{N}{1 \over n + \xi} - {1 \over N + 1 + \xi}}
=
-\,{\root{3} \over 3}\Im\pars{1 \over 1 + \xi }
\\[3mm]&=
-\,{\root{3} \over 3}\Im\bracks{1 \over \pars{1 + \root{3}\ic}/2}
=
-\,{\root{3} \over 6}\Im\pars{1 - \root{3}\ic} = {1 \over 2}
\end{align}
$$\color{#0000ff}{\large%
\sum_{n = 1}^{\infty}{n \más de n^{4} + n^{2} + 1} = {1 \más de 2}}
$$