$\newcommand{\+}{^{\daga}}%
\newcommand{\ángulos}[1]{\left\langle #1 \right\rangle}%
\newcommand{\llaves}[1]{\left\lbrace #1 \right\rbrace}%
\newcommand{\bracks}[1]{\left\lbrack #1 \right\rbrack}%
\newcommand{\ceil}[1]{\,\left\lceil #1 \right\rceil\,}%
\newcommand{\dd}{{\rm d}}%
\newcommand{\down}{\downarrow}%
\newcommand{\ds}[1]{\displaystyle{#1}}%
\newcommand{\equalby}[1]{{#1 \cima {= \cima \vphantom{\enorme}}}}%
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}%
\newcommand{\fermi}{\,{\rm f}}%
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}%
\newcommand{\mitad}{{1 \over 2}}%
\newcommand{\ic}{{\rm i}}%
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}%
\newcommand{\isdiv}{\,\left.\a la derecha\vert\,}%
\newcommand{\cy}[1]{\left\vert #1\right\rangle}%
\newcommand{\ol}[1]{\overline{#1}}%
\newcommand{\pars}[1]{\left( #1 \right)}%
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}%
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,#2\,}\,}%
\newcommand{\sech}{\,{\rm sech}}%
\newcommand{\sgn}{\,{\rm sgn}}%
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}%
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}$
La integral converge siempre que $\ds{1 < \Re\alpha < 3}$ como se ha demostrado anteriormente por $\tt\mbox{@Olivier Bégassat}$.
\begin{align}
&\int_{0}^{\infty}{\ln\pars{1 + x^{2}} \over x^{\alpha}}\,\dd x
=
\overbrace{\int_{1}^{\infty}{\ln\pars{x} \over \pars{x - 1}^{\alpha/2}}\,\half\,
\pars{x - 1}^{-1/2}\,\dd x}^{\ds{1 + x^{2} \to x}}
=
\half\int_{1}^{\infty}{\ln\pars{x} \over \pars{x - 1}^{\pars{\alpha + 1}/2}}\,\dd x
\\[3mm]&=
\half\overbrace{\int_{1}^{0}{\ln\pars{1/x} \over \pars{1/x - 1}^{\pars{\alpha + 1}/2}}\,
\pars{-\,{\dd x \over x^{2}}}}^{\ds{x \to {1 \over x}}}
=
-\,\half\int^{1}_{0}
{x^{\pars{\alpha - 3}/2}\ln\pars{x} \over \pars{1 - x}^{\pars{\alpha + 1}/2}}\,\dd x
\\[3mm]&=
-\,\half\lim_{\mu \to 0}\partiald{}{\mu}\int^{1}_{0}
{x^{\mu + \pars{\alpha - 3}/2}\pars{1 - x}^{-\pars{\alpha + 1}/2}}\,\dd x
=
-\,\half\lim_{\mu \to 0}\partiald{{\rm B}\pars{\mu + \alpha/2 - 1/2,1/2 - \alpha/2}}{\mu}
\end{align}
donde ${\rm B}\pars{x,y}$ $\it Beta$ función de:
$$
{\rm B}\pars{a,b} \equiv \int_{0}^{1}t^{- 1}\pars{1 - t}^{b - 1}\,\dd t\,,\qquad
\Re >0\,,\quad \Re b > 0
$$
Con la identidad
$\ds{{\rm B}\pars{a,b} ={\Gamma\pars{a}\Gamma\pars{b} \over \Gamma\pars{a + b}}}$
$\ds{\pars{~\Gamma\pars{z}\ \mbox{is the}\ {\it Gamma}\ \mbox{function}~}}$:
\begin{align}
&\int_{0}^{\infty}{\ln\pars{1 + x^{2}} \over x^{\alpha}}\,\dd x=
-\,\half\lim_{\mu \to 0}\partiald{}{\mu}\bracks{%
{\Gamma\pars{\mu + \alpha/2 - 1/2}\Gamma\pars{1/2 - \alpha/2}
\over \Gamma\pars{\mu}}}
\\[3mm]&=-\,\half\,\Gamma\pars{\half - {\alpha \over 2}}\lim_{\mu \to 0}
\partiald{}{\mu}
\bracks{\mu\Gamma\pars{\alpha/2 - 1/2 + \mu} \over \Gamma\pars{1 + \mu}}
\end{align}
donde hemos usado la identidad de $\Gamma\pars{z + 1} = z\Gamma\pars{z}$.
\begin{align}
&\int_{0}^{\infty}{\ln\pars{1 + x^{2}} \over x^{\alpha}}\,\dd x
=
-\,\half\,\Gamma\pars{\half - {\alpha \over 2}}\times\lim_{\mu \to 0}\!\!\!
\braces{\!\!\!%
\bracks{%
\Gamma\pars{\alpha/2 - 1/2 + \mu}
+ \mu\Psi\pars{\alpha/2 - 1/2 + \mu}}\Gamma\pars{1 + \mu}
- \Psi\pars{1 + \mu}\bracks{\mu\Gamma\pars{\alpha/2 - 1/2 + \mu}}
\over \Gamma\pars{1 + \mu}\!\!\!}
\end{align}
$\ds{\Psi\pars{z} \equiv \totald{\ln\pars{\Gamma\pars{z}}}{z}}$ $\it digamma$
la función.
Con $\ds{\Gamma\pars{1} = 1}$ y la identidad
$\ds{\Gamma\pars{z}\Gamma\pars{1 - z} = {\pi \over \sin\pars{\pi z}}}$:
\begin{align}
&\int_{0}^{\infty}{\ln\pars{1 + x^{2}} \over x^{\alpha}}\,\dd x\\[3mm]&=
-\,\half\,\Gamma\pars{\half - {\alpha \over 2}}\Gamma\pars{{\alpha \over 2} - \half}
=-\,\half\,
{\pi \over \Gamma\pars{1/2 + \alpha/2}\sin\pars{\pi\bracks{1/2 - \alpha/2}}}
\Gamma\pars{{\alpha \over 2} - \half}
\\[3mm]&=-\,\half\,{\pi \over \cos\pars{\pi\alpha/2}}
{\Gamma\pars{\alpha/2 - 1/2} \over \Gamma\pars{1/2 + \alpha/2}}
=-\half\,\pi\sec\pars{\pi\alpha \over 2}\,
{\Gamma\pars{\alpha/2 - 1/2} \over \pars{\alpha/2 - 1/2}\Gamma\pars{-1/2 + \alpha/2}}
\end{align}
$$\color{#0000ff}{\large%
\int_{0}^{\infty}{\ln\pars{1 + x^{2}} \over x^{\alpha}}\,\dd x
=
-\,{\pi\sec\pars{\pi\alpha/2} \\alfa - 1}\,,\qquad
1 < \Re\alpha < 3}
$$