¿Cómo demostrar que estas conjeturas son ciertas?
Definición : $\text{Let}~ P_m(x)=2^{-m}\cdot \left(\left(x-\sqrt{x^2-4}\right)^{m}+\left(x+\sqrt{x^2-4}\right)^{m}\right)~ , \text{where}~ m ~\text{and}~ x ~\text{are nonnegative integers} .$
Conjetura 1 : $ \text{Let} ~N=k\cdot 2^n-c ~\text{such that}~ n>2c , k>0 , c>0 ~\text{and}~ c\equiv 3,5 \pmod{8}$
$$\text{Let}~ S_i=P_2(S_{i-1})~ \text{with}~ S_0=P_k(6) , ~\text{thus} $$ $$\text{If}~ N ~\text{is prime then}~ S_{n-1} \equiv -P_{\lfloor c/2 \rfloor}(6) \pmod{N}$$
Búsqueda de contraejemplo (Pari GP) :
CEk2c(k,c,g)=
{
for(n=2*c+1,g,a=6;
N=k*2^n-c;
my(s=Mod(2*polchebyshev(k,1,a/2),N));
for(i=1,n-1, s=s^2-2);
if(!(s==N-2*polchebyshev(floor(c/2),1,a/2)) && isprime(N),print(n)))
}
Conjetura 2 : $ \text{Let} ~N=k\cdot 2^n-c ~\text{such that}~ n>2c , k>0 , c>0 ~\text{and}~ c\equiv 1,7 \pmod{8}$
$$\text{Let}~ S_i=P_2(S_{i-1})~ \text{with}~ S_0=P_k(6) , ~\text{thus} $$ $$\text{If}~ N ~\text{is prime then}~ S_{n-1} \equiv P_{\lceil c/2 \rceil}(6) \pmod{N}$$
Búsqueda de contraejemplo (Pari GP) :
CEk2c(k,c,g)=
{
for(n=2*c+1,g,a=6;
N=k*2^n-c;
my(s=Mod(2*polchebyshev(k,1,a/2),N));
for(i=1,n-1, s=s^2-2);
if(!(s==2*polchebyshev(ceil(c/2),1,a/2)) && isprime(N),print(n)))
}
Conjetura 3 : $ \text{Let} ~N=k\cdot 2^n+c ~\text{such that}~ n>2c , k>0 , c>0 ~\text{and}~ c\equiv 3,5 \pmod{8}$
$$\text{Let}~ S_i=P_2(S_{i-1})~ \text{with}~ S_0=P_k(6) , ~\text{thus} $$ $$\text{If}~ N ~\text{is prime then}~ S_{n-1} \equiv -P_{\lceil c/2 \rceil}(6) \pmod{N}$$
Búsqueda de contraejemplo (Pari GP) :
CEk2c(k,c,g)=
{
for(n=2*c+1,g,a=6;
N=k*2^n+c;
my(s=Mod(2*polchebyshev(k,1,a/2),N));
for(i=1,n-1, s=s^2-2);
if(!(s==N-2*polchebyshev(ceil(c/2),1,a/2)) && isprime(N),print(n)))
}
Conjetura 4 : $ \text{Let} ~N=k\cdot 2^n+c ~\text{such that}~ n>2c , k>0 , c>0 ~\text{and}~ c\equiv 1,7 \pmod{8}$
$$\text{Let}~ S_i=P_2(S_{i-1})~ \text{with}~ S_0=P_k(6) , ~\text{thus} $$ $$\text{If}~ N ~\text{is prime then}~ S_{n-1} \equiv P_{\lfloor c/2 \rfloor}(6) \pmod{N}$$
Búsqueda de contraejemplo (Pari GP) :
CEk2c(k,c,g)=
{
for(n=2*c+1,g,a=6;
N=k*2^n+c;
my(s=Mod(2*polchebyshev(k,1,a/2),N));
for(i=1,n-1, s=s^2-2);
if(!(s==2*polchebyshev(floor(c/2),1,a/2)) && isprime(N),print(n)))
}
Se agradece cualquier pista.
0 votos
Al menos muestra algunos de tus intentos