Cómo evaluar $\lim _{x\to \infty }\left(\frac{x+3}{\sqrt{x^2-5x}}\right)^{x^2\sin\left(1/x\right)}$?
Yo:
$$\lim _{x\to \infty }\left(x^2\sin\left(\frac{1}{x}\right)\ln\left(\frac{x+3}{\sqrt{x^2-5x}}\right)\right) = \lim _{t\to 0 }\left(\frac{1}{t^2}\sin\left(t\right)\ln\left(\frac{\frac{1}{t}+3}{\sqrt{\frac{1}{t^2}-\frac{5}{t}}}\right)\right)$$ Ahora $\sin(x) \approx x, x \rightarrow 0$ así: $$\approx \lim _{t\to 0 }\left(\frac{1}{t}ln\left(\frac{\left(3t+1\right)\sqrt{-5t+1}}{1-5t}\right)\right)$$
En este punto he utilizado la regla de l'Hôpital así:
$$\lim _{t\to 0 }\left(\frac{1}{t}ln\left(\frac{\left(3t+1\right)\sqrt{-5t+1}}{1-5t}\right)\right) = \lim _{t\to 0}\left(\frac{\frac{-15t+11}{2\left(-5t+1\right)\left(3t+1\right)}}{1}\right) = \frac{11}{2}$$
Así:
$$\lim _{x\to \infty }\left(\left(\frac{x+3}{\sqrt{x^2-5x}}\right)^{x^2\sin\left(\frac{1}{x}\right)}\right) = \color{red}{e^\frac{11}{2}}$$
Cual es el resultado exacto de la propuesta de límite.
Mi pregunta es, hay otro método, diferente de la mía para obtener el mismo resultado? (De preferencia sin tener que recurrir a la regla de l'Hôpital).