$\newcommand{\+}{^{\daga}}
\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\a la derecha\vert\,}
\newcommand{\cy}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
$\ds{\int_{0}^{\pi/2}{\ln\pars{\sin\pars{x}}\ln\pars{\cos\pars{x}}
\\tan\pars{x}}\,\dd x:\ {\large ?}}$
\begin{align}&\overbrace{\color{#66f}{\large\int_{0}^{\pi/2}{\ln\pars{\sin\pars{x}}\ln\pars{\cos\pars{x}}\ \tan\pars{x}}\,\dd x}}
^{\ds{\mbox{Set}\ \sin\pars{x} \equiv t\ imp\ x = \arcsin\pars{t}}}\ =\
\int_{0}^{1}{\ln\pars{t}\ln\pars{\raíz{1 - t^{2}}} \over t\,/\raíz{1 - t^{2}}}\,
{\dd t \\raíz{1 - t^{2}}}
\\[5mm]&=\media\int_{0}^{1}{\ln\pars{t}\ln\pars{1 - t^{2}} \over t}\,\dd t
=\media\int_{0}^{1}{\ln\pars{t^{1/2}}\ln\pars{1 - t}\over
t^{1/2}}\,\media\,t^{-1/2}\,\dd t
\\[5mm]&={1 \over 8}\int_{0}^{1}{\ln\pars{t}\ln\pars{1 - t} \over t}\,\dd t
=-\,{1 \over 8}\int_{0}^{1}{{\rm Li}_{1}\pars{t} \over t}\,\ln\pars{t}\,\dd t
=-\,{1 \over 8}\int_{0}^{1}{\rm Li}_{2}'\pars{t}\ln\pars{t}\,\dd t
\\[5mm]&={1 \over 8}\int_{0}^{1}{{\rm Li}_{2}\pars{t} \over t}\,\dd t
={1 \over 8}\int_{0}^{1}{\rm Li}_{3}'\pars{t}\,\dd t
={1 \over 8}\,{\rm Li}_{3}\pars{1}=\color{#66f}{\large{1 \over 8}\,\zeta\pars{3}}
\aprox 0.1503
\end{align}
$\ds{{\rm Li}_{\rm s}\pars{z}}$ es un
PolyLogarithm Función y hemos utilizado las propiedades ya conocidas de ellos como se informó en el citado enlace.
$\ds{\zeta\pars{s}}$ es la de Riemann Zeta Función.